STM32H735xx HAL User Manual
stm32h7xx_hal_pwr_ex.c
Go to the documentation of this file.
00001 /**
00002   ******************************************************************************
00003   * @file    stm32h7xx_hal_pwr_ex.c
00004   * @author  MCD Application Team
00005   * @brief   Extended PWR HAL module driver.
00006   *          This file provides firmware functions to manage the following
00007   *          functionalities of PWR extension peripheral:
00008   *           + Peripheral Extended features functions
00009   ******************************************************************************
00010   * @attention
00011   *
00012   * Copyright (c) 2017 STMicroelectronics.
00013   * All rights reserved.
00014   *
00015   * This software is licensed under terms that can be found in the LICENSE file
00016   * in the root directory of this software component.
00017   * If no LICENSE file comes with this software, it is provided AS-IS.
00018   *
00019   ******************************************************************************
00020   @verbatim
00021   ==============================================================================
00022                         ##### How to use this driver #####
00023   ==============================================================================
00024   [..]
00025    (#) Call HAL_PWREx_ConfigSupply() function to configure the regulator supply
00026        with the following different setups according to hardware (support SMPS):
00027        (+) PWR_DIRECT_SMPS_SUPPLY
00028        (+) PWR_SMPS_1V8_SUPPLIES_LDO
00029        (+) PWR_SMPS_2V5_SUPPLIES_LDO
00030        (+) PWR_SMPS_1V8_SUPPLIES_EXT_AND_LDO
00031        (+) PWR_SMPS_2V5_SUPPLIES_EXT_AND_LDO
00032        (+) PWR_SMPS_1V8_SUPPLIES_EXT
00033        (+) PWR_SMPS_2V5_SUPPLIES_EXT
00034        (+) PWR_LDO_SUPPLY
00035        (+) PWR_EXTERNAL_SOURCE_SUPPLY
00036 
00037    (#) Call HAL_PWREx_GetSupplyConfig() function to get the current supply setup.
00038 
00039    (#) Call HAL_PWREx_ControlVoltageScaling() function to configure the main
00040        internal regulator output voltage. The voltage scaling could be one of
00041        the following scales :
00042        (+) PWR_REGULATOR_VOLTAGE_SCALE0
00043        (+) PWR_REGULATOR_VOLTAGE_SCALE1
00044        (+) PWR_REGULATOR_VOLTAGE_SCALE2
00045        (+) PWR_REGULATOR_VOLTAGE_SCALE3
00046 
00047    (#) Call HAL_PWREx_GetVoltageRange() function to get the current output
00048        voltage applied to the main regulator.
00049 
00050    (#) Call HAL_PWREx_ControlStopModeVoltageScaling() function to configure the
00051        main internal regulator output voltage in STOP mode. The voltage scaling
00052        in STOP mode could be one of the following scales :
00053        (+) PWR_REGULATOR_SVOS_SCALE3
00054        (+) PWR_REGULATOR_SVOS_SCALE4
00055        (+) PWR_REGULATOR_SVOS_SCALE5
00056 
00057    (#) Call HAL_PWREx_GetStopModeVoltageRange() function to get the current
00058        output voltage applied to the main regulator in STOP mode.
00059 
00060    (#) Call HAL_PWREx_EnterSTOP2Mode() function to enter the system in STOP mode
00061        with core domain in D2STOP mode. This API is used only for STM32H7Axxx
00062        and STM32H7Bxxx devices.
00063        Please ensure to clear all CPU pending events by calling
00064        HAL_PWREx_ClearPendingEvent() function when trying to enter the Cortex-Mx
00065        in DEEP-SLEEP mode with __WFE() entry.
00066 
00067    (#) Call HAL_PWREx_EnterSTOPMode() function to enter the selected domain in
00068        DSTOP mode. Call this API with all available power domains to enter the
00069        system in STOP mode.
00070        Please ensure to clear all CPU pending events by calling
00071        HAL_PWREx_ClearPendingEvent() function when trying to enter the Cortex-Mx
00072        in DEEP-SLEEP mode with __WFE() entry.
00073 
00074    (#) Call HAL_PWREx_ClearPendingEvent() function always before entring the
00075        Cortex-Mx in any low power mode (SLEEP/DEEP-SLEEP) using WFE entry.
00076 
00077    (#) Call HAL_PWREx_EnterSTANDBYMode() function to enter the selected domain
00078        in DSTANDBY mode. Call this API with all available power domains to enter
00079        the system in STANDBY mode.
00080 
00081    (#) Call HAL_PWREx_ConfigD3Domain() function to setup the D3/SRD domain state
00082        (RUN/STOP) when the system enter to low power mode.
00083 
00084    (#) Call HAL_PWREx_ClearDomainFlags() function to clear the CPU flags for the
00085        selected power domain. This API is used only for dual core devices.
00086 
00087    (#) Call HAL_PWREx_HoldCore() and HAL_PWREx_ReleaseCore() functions to hold
00088        and release the selected CPU and and their domain peripherals when
00089        exiting STOP mode. These APIs are used only for dual core devices.
00090 
00091    (#) Call HAL_PWREx_EnableFlashPowerDown() and
00092        HAL_PWREx_DisableFlashPowerDown() functions to enable and disable the
00093        Flash Power Down in STOP mode.
00094 
00095    (#) Call HAL_PWREx_EnableMemoryShutOff() and
00096        HAL_PWREx_DisableMemoryShutOff() functions to enable and disable the
00097        memory block shut-off in DStop or DStop2. These APIs are used only for
00098        STM32H7Axxx and STM32H7Bxxx lines.
00099 
00100    (#) Call HAL_PWREx_EnableWakeUpPin() and HAL_PWREx_DisableWakeUpPin()
00101        functions to enable and disable the Wake-up pin functionality for
00102        the selected pin.
00103 
00104    (#) Call HAL_PWREx_GetWakeupFlag() and HAL_PWREx_ClearWakeupFlag()
00105        functions to manage wake-up flag for the selected pin.
00106 
00107    (#) Call HAL_PWREx_WAKEUP_PIN_IRQHandler() function to handle all wake-up
00108        pins interrupts.
00109 
00110    (#) Call HAL_PWREx_EnableBkUpReg() and HAL_PWREx_DisableBkUpReg() functions
00111        to enable and disable the backup domain regulator.
00112 
00113    (#) Call HAL_PWREx_EnableUSBReg(), HAL_PWREx_DisableUSBReg(),
00114        HAL_PWREx_EnableUSBVoltageDetector() and
00115        HAL_PWREx_DisableUSBVoltageDetector() functions to manage USB power
00116        regulation functionalities.
00117 
00118    (#) Call HAL_PWREx_EnableBatteryCharging() and
00119        HAL_PWREx_DisableBatteryCharging() functions to enable and disable the
00120        battery charging feature with the selected resistor.
00121 
00122    (#) Call HAL_PWREx_EnableAnalogBooster() and
00123        HAL_PWREx_DisableAnalogBooster() functions to enable and disable the
00124        AVD boost feature when the VDD supply voltage is below 2V7.
00125 
00126    (#) Call HAL_PWREx_EnableMonitoring() and HAL_PWREx_DisableMonitoring()
00127        functions to enable and disable the VBAT and Temperature monitoring.
00128        When VBAT and Temperature monitoring feature is enables, use
00129        HAL_PWREx_GetTemperatureLevel() and HAL_PWREx_GetVBATLevel() to get
00130        respectively the Temperature level and VBAT level.
00131 
00132    (#) Call HAL_PWREx_GetMMCVoltage() and HAL_PWREx_DisableMonitoring()
00133        function to get VDDMMC voltage level. This API is used only for
00134        STM32H7Axxx and STM32H7Bxxx lines
00135 
00136    (#) Call HAL_PWREx_ConfigAVD() after setting parameter to be configured
00137        (event mode and voltage threshold) in order to set up the Analog Voltage
00138        Detector then use HAL_PWREx_EnableAVD() and  HAL_PWREx_DisableAVD()
00139        functions to start and stop the AVD detection.
00140        (+) AVD level could be one of the following values :
00141              (++) 1V7
00142              (++) 2V1
00143              (++) 2V5
00144              (++) 2V8
00145 
00146    (#) Call HAL_PWREx_PVD_AVD_IRQHandler() function to handle the PWR PVD and
00147        AVD interrupt request.
00148 
00149   @endverbatim
00150   */
00151 
00152 /* Includes ------------------------------------------------------------------*/
00153 #include "stm32h7xx_hal.h"
00154 
00155 /** @addtogroup STM32H7xx_HAL_Driver
00156   * @{
00157   */
00158 
00159 /** @defgroup PWREx PWREx
00160   * @brief PWR Extended HAL module driver
00161   * @{
00162   */
00163 
00164 #ifdef HAL_PWR_MODULE_ENABLED
00165 
00166 /* Private typedef -----------------------------------------------------------*/
00167 /* Private define ------------------------------------------------------------*/
00168 
00169 /** @addtogroup PWREx_Private_Constants
00170   * @{
00171   */
00172 
00173 /** @defgroup PWREx_AVD_Mode_Mask PWR Extended AVD Mode Mask
00174   * @{
00175   */
00176 #define AVD_MODE_IT              (0x00010000U)
00177 #define AVD_MODE_EVT             (0x00020000U)
00178 #define AVD_RISING_EDGE          (0x00000001U)
00179 #define AVD_FALLING_EDGE         (0x00000002U)
00180 #define AVD_RISING_FALLING_EDGE  (0x00000003U)
00181 /**
00182   * @}
00183   */
00184 
00185 /** @defgroup PWREx_REG_SET_TIMEOUT PWR Extended Flag Setting Time Out Value
00186   * @{
00187   */
00188 #define PWR_FLAG_SETTING_DELAY   (1000U)
00189 /**
00190   * @}
00191   */
00192 
00193 /** @defgroup PWREx_WakeUp_Pins_Offsets PWREx Wake-Up Pins masks and offsets
00194   * @{
00195   */
00196 /* Wake-Up Pins EXTI register mask */
00197 #if defined (EXTI_IMR2_IM57)
00198 #define PWR_EXTI_WAKEUP_PINS_MASK  (EXTI_IMR2_IM55 | EXTI_IMR2_IM56 |\
00199                                     EXTI_IMR2_IM57 | EXTI_IMR2_IM58 |\
00200                                     EXTI_IMR2_IM59 | EXTI_IMR2_IM60)
00201 #else
00202 #define PWR_EXTI_WAKEUP_PINS_MASK  (EXTI_IMR2_IM55 | EXTI_IMR2_IM56 |\
00203                                     EXTI_IMR2_IM58 | EXTI_IMR2_IM60)
00204 #endif /* defined (EXTI_IMR2_IM57) */
00205 
00206 /* Wake-Up Pins PWR Pin Pull shift offsets */
00207 #define PWR_WAKEUP_PINS_PULL_SHIFT_OFFSET (2U)
00208 /**
00209   * @}
00210   */
00211 
00212 /**
00213   * @}
00214   */
00215 
00216 /* Private macro -------------------------------------------------------------*/
00217 /* Private variables ---------------------------------------------------------*/
00218 /* Private function prototypes -----------------------------------------------*/
00219 /* Private functions ---------------------------------------------------------*/
00220 /* Exported types ------------------------------------------------------------*/
00221 /* Exported functions --------------------------------------------------------*/
00222 
00223 /** @defgroup PWREx_Exported_Functions PWREx Exported Functions
00224   * @{
00225   */
00226 
00227 /** @defgroup PWREx_Exported_Functions_Group1 Power Supply Control Functions
00228   * @brief    Power supply control functions
00229   *
00230 @verbatim
00231  ===============================================================================
00232                   ##### Power supply control functions #####
00233  ===============================================================================
00234     [..]
00235    (#) When the system is powered on, the POR monitors VDD supply. Once VDD is
00236        above the POR threshold level, the voltage regulator is enabled in the
00237        default supply configuration:
00238       (+) The Voltage converter output level is set at 1V0 in accordance with
00239           the VOS3 level configured in PWR (D3/SRD) domain control register
00240           (PWR_D3CR/PWR_SRDCR).
00241       (+) The system is kept in reset mode as long as VCORE is not ok.
00242       (+) Once VCORE is ok, the system is taken out of reset and the HSI
00243           oscillator is enabled.
00244       (+) Once the oscillator is stable, the system is initialized: Flash memory
00245           and option bytes are loaded and the CPU starts in Run* mode.
00246       (+) The software shall then initialize the system including supply
00247           configuration programming using the HAL_PWREx_ConfigSupply().
00248       (+) Once the supply configuration has been configured, the
00249           HAL_PWREx_ConfigSupply() function checks the ACTVOSRDY bit in PWR
00250           control status register 1 (PWR_CSR1) to guarantee a valid voltage
00251           levels:
00252        (++) As long as ACTVOSRDY indicates that voltage levels are invalid, the
00253             system is in limited Run* mode, write accesses to the RAMs are not
00254             permitted and VOS shall not be changed.
00255        (++) Once ACTVOSRDY indicates that voltage levels are valid, the system
00256             is in normal Run mode, write accesses to RAMs are allowed and VOS
00257             can be changed.
00258 
00259 @endverbatim
00260   * @{
00261   */
00262 
00263 /**
00264   * @brief Configure the system Power Supply.
00265   * @param  SupplySource : Specifies the Power Supply source to set after a
00266   *                        system startup.
00267   *         This parameter can be one of the following values :
00268   *            @arg PWR_DIRECT_SMPS_SUPPLY : The SMPS supplies the Vcore Power
00269   *                                          Domains. The LDO is Bypassed.
00270   *            @arg PWR_SMPS_1V8_SUPPLIES_LDO : The SMPS 1.8V output supplies
00271   *                                             the LDO. The Vcore Power Domains
00272   *                                             are supplied from the LDO.
00273   *            @arg PWR_SMPS_2V5_SUPPLIES_LDO : The SMPS 2.5V output supplies
00274   *                                             the LDO. The Vcore Power Domains
00275   *                                             are supplied from the LDO.
00276   *            @arg PWR_SMPS_1V8_SUPPLIES_EXT_AND_LDO : The SMPS 1.8V output
00277   *                                                     supplies external
00278   *                                                     circuits and the LDO.
00279   *                                                     The Vcore Power Domains
00280   *                                                     are supplied from the
00281   *                                                     LDO.
00282   *            @arg PWR_SMPS_2V5_SUPPLIES_EXT_AND_LDO : The SMPS 2.5V output
00283   *                                                     supplies external
00284   *                                                     circuits and the LDO.
00285   *                                                     The Vcore Power Domains
00286   *                                                     are supplied from the
00287   *                                                     LDO.
00288   *            @arg PWR_SMPS_1V8_SUPPLIES_EXT : The SMPS 1.8V output supplies
00289   *                                             external circuits. The LDO is
00290   *                                             Bypassed. The Vcore Power
00291   *                                             Domains are supplied from
00292   *                                             external source.
00293   *            @arg PWR_SMPS_2V5_SUPPLIES_EXT : The SMPS 2.5V output supplies
00294   *                                             external circuits. The LDO is
00295   *                                             Bypassed. The Vcore Power
00296   *                                             Domains are supplied from
00297   *                                             external source.
00298   *            @arg PWR_LDO_SUPPLY : The LDO regulator supplies the Vcore Power
00299   *                                  Domains. The SMPS regulator is Bypassed.
00300   *            @arg PWR_EXTERNAL_SOURCE_SUPPLY : The SMPS and the LDO are
00301   *                                              Bypassed. The Vcore Power
00302   *                                              Domains are supplied from
00303   *                                              external source.
00304   * @note   The PWR_LDO_SUPPLY and PWR_EXTERNAL_SOURCE_SUPPLY are used by all
00305   *         H7 lines.
00306   *         The PWR_DIRECT_SMPS_SUPPLY, PWR_SMPS_1V8_SUPPLIES_LDO,
00307   *         PWR_SMPS_2V5_SUPPLIES_LDO, PWR_SMPS_1V8_SUPPLIES_EXT_AND_LDO,
00308   *         PWR_SMPS_2V5_SUPPLIES_EXT_AND_LDO, PWR_SMPS_1V8_SUPPLIES_EXT and
00309   *         PWR_SMPS_2V5_SUPPLIES_EXT are used only for lines that supports SMPS
00310   *         regulator.
00311   * @retval HAL status.
00312   */
00313 HAL_StatusTypeDef HAL_PWREx_ConfigSupply (uint32_t SupplySource)
00314 {
00315   uint32_t tickstart;
00316 
00317   /* Check the parameters */
00318   assert_param (IS_PWR_SUPPLY (SupplySource));
00319 
00320   /* Check if supply source was configured */
00321 #if defined (PWR_FLAG_SCUEN)
00322   if (__HAL_PWR_GET_FLAG (PWR_FLAG_SCUEN) == 0U)
00323 #else
00324   if ((PWR->CR3 & (PWR_CR3_SMPSEN | PWR_CR3_LDOEN | PWR_CR3_BYPASS)) != (PWR_CR3_SMPSEN | PWR_CR3_LDOEN))
00325 #endif /* defined (PWR_FLAG_SCUEN) */
00326   {
00327     /* Check supply configuration */
00328     if ((PWR->CR3 & PWR_SUPPLY_CONFIG_MASK) != SupplySource)
00329     {
00330       /* Supply configuration update locked, can't apply a new supply config */
00331       return HAL_ERROR;
00332     }
00333     else
00334     {
00335       /* Supply configuration update locked, but new supply configuration
00336          matches with old supply configuration : nothing to do
00337       */
00338       return HAL_OK;
00339     }
00340   }
00341 
00342   /* Set the power supply configuration */
00343   MODIFY_REG (PWR->CR3, PWR_SUPPLY_CONFIG_MASK, SupplySource);
00344 
00345   /* Get tick */
00346   tickstart = HAL_GetTick ();
00347 
00348   /* Wait till voltage level flag is set */
00349   while (__HAL_PWR_GET_FLAG (PWR_FLAG_ACTVOSRDY) == 0U)
00350   {
00351     if ((HAL_GetTick () - tickstart) > PWR_FLAG_SETTING_DELAY)
00352     {
00353       return HAL_ERROR;
00354     }
00355   }
00356 
00357 #if defined (SMPS)
00358   /* When the SMPS supplies external circuits verify that SDEXTRDY flag is set */
00359   if ((SupplySource == PWR_SMPS_1V8_SUPPLIES_EXT_AND_LDO) ||
00360       (SupplySource == PWR_SMPS_2V5_SUPPLIES_EXT_AND_LDO) ||
00361       (SupplySource == PWR_SMPS_1V8_SUPPLIES_EXT)         ||
00362       (SupplySource == PWR_SMPS_2V5_SUPPLIES_EXT))
00363   {
00364     /* Get the current tick number */
00365     tickstart = HAL_GetTick ();
00366 
00367     /* Wait till SMPS external supply ready flag is set */
00368     while (__HAL_PWR_GET_FLAG (PWR_FLAG_SMPSEXTRDY) == 0U)
00369     {
00370       if ((HAL_GetTick () - tickstart) > PWR_FLAG_SETTING_DELAY)
00371       {
00372         return HAL_ERROR;
00373       }
00374     }
00375   }
00376 #endif /* defined (SMPS) */
00377 
00378   return HAL_OK;
00379 }
00380 
00381 /**
00382   * @brief Get the power supply configuration.
00383   * @retval The supply configuration.
00384   */
00385 uint32_t HAL_PWREx_GetSupplyConfig (void)
00386 {
00387   return (PWR->CR3 & PWR_SUPPLY_CONFIG_MASK);
00388 }
00389 
00390 /**
00391   * @brief Configure the main internal regulator output voltage.
00392   * @param  VoltageScaling : Specifies the regulator output voltage to achieve
00393   *                          a tradeoff between performance and power
00394   *                          consumption.
00395   *          This parameter can be one of the following values :
00396   *            @arg PWR_REGULATOR_VOLTAGE_SCALE0 : Regulator voltage output
00397   *                                                Scale 0 mode.
00398   *            @arg PWR_REGULATOR_VOLTAGE_SCALE1 : Regulator voltage output
00399   *                                                range 1 mode.
00400   *            @arg PWR_REGULATOR_VOLTAGE_SCALE2 : Regulator voltage output
00401   *                                                range 2 mode.
00402   *            @arg PWR_REGULATOR_VOLTAGE_SCALE3 : Regulator voltage output
00403   *                                                range 3 mode.
00404   * @note   For STM32H74x and STM32H75x lines, configuring Voltage Scale 0 is
00405   *         only possible when Vcore is supplied from LDO (Low DropOut). The
00406   *         SYSCFG Clock must be enabled through __HAL_RCC_SYSCFG_CLK_ENABLE()
00407   *         macro before configuring Voltage Scale 0.
00408   *         To enter low power mode , and if current regulator voltage is
00409   *         Voltage Scale 0 then first switch to Voltage Scale 1 before entering
00410   *         low power mode.
00411   * @retval HAL Status
00412   */
00413 HAL_StatusTypeDef HAL_PWREx_ControlVoltageScaling (uint32_t VoltageScaling)
00414 {
00415   uint32_t tickstart;
00416 
00417   /* Check the parameters */
00418   assert_param (IS_PWR_REGULATOR_VOLTAGE (VoltageScaling));
00419 
00420   /* Get the voltage scaling  */
00421   if ((PWR->CSR1 & PWR_CSR1_ACTVOS) == VoltageScaling)
00422   {
00423     /* Old and new voltage scaling configuration match : nothing to do */
00424     return HAL_OK;
00425   }
00426 
00427 #if defined (PWR_SRDCR_VOS)
00428   /* Set the voltage range */
00429   MODIFY_REG (PWR->SRDCR, PWR_SRDCR_VOS, VoltageScaling);
00430 #else
00431 #if defined(SYSCFG_PWRCR_ODEN) /* STM32H74xxx and STM32H75xxx lines */
00432   if (VoltageScaling == PWR_REGULATOR_VOLTAGE_SCALE0)
00433   {
00434     if ((PWR->CR3 & PWR_CR3_LDOEN) == PWR_CR3_LDOEN)
00435     {
00436       /* Set the voltage range */
00437       MODIFY_REG (PWR->D3CR, PWR_D3CR_VOS, PWR_REGULATOR_VOLTAGE_SCALE1);
00438 
00439       /* Get tick */
00440       tickstart = HAL_GetTick ();
00441 
00442       /* Wait till voltage level flag is set */
00443       while (__HAL_PWR_GET_FLAG (PWR_FLAG_ACTVOSRDY) == 0U)
00444       {
00445         if ((HAL_GetTick () - tickstart) > PWR_FLAG_SETTING_DELAY)
00446         {
00447           return HAL_ERROR;
00448         }
00449       }
00450 
00451       /* Enable the PWR overdrive */
00452       SET_BIT (SYSCFG->PWRCR, SYSCFG_PWRCR_ODEN);
00453     }
00454     else
00455     {
00456       /* The voltage scale 0 is only possible when LDO regulator is enabled */
00457       return HAL_ERROR;
00458     }
00459   }
00460   else
00461   {
00462     if ((PWR->CSR1 & PWR_CSR1_ACTVOS) == PWR_REGULATOR_VOLTAGE_SCALE1)
00463     {
00464       if ((SYSCFG->PWRCR & SYSCFG_PWRCR_ODEN) != 0U)
00465       {
00466         /* Disable the PWR overdrive */
00467         CLEAR_BIT(SYSCFG->PWRCR, SYSCFG_PWRCR_ODEN);
00468 
00469         /* Get tick */
00470         tickstart = HAL_GetTick ();
00471 
00472         /* Wait till voltage level flag is set */
00473         while (__HAL_PWR_GET_FLAG (PWR_FLAG_ACTVOSRDY) == 0U)
00474         {
00475           if ((HAL_GetTick () - tickstart) > PWR_FLAG_SETTING_DELAY)
00476           {
00477             return HAL_ERROR;
00478           }
00479         }
00480       }
00481     }
00482 
00483     /* Set the voltage range */
00484     MODIFY_REG (PWR->D3CR, PWR_D3CR_VOS, VoltageScaling);
00485   }
00486 #else  /* STM32H72xxx and STM32H73xxx lines */
00487   /* Set the voltage range */
00488   MODIFY_REG(PWR->D3CR, PWR_D3CR_VOS, VoltageScaling);
00489 #endif /* defined (SYSCFG_PWRCR_ODEN) */
00490 #endif /* defined (PWR_SRDCR_VOS) */
00491 
00492   /* Get tick */
00493   tickstart = HAL_GetTick ();
00494 
00495   /* Wait till voltage level flag is set */
00496   while (__HAL_PWR_GET_FLAG (PWR_FLAG_ACTVOSRDY) == 0U)
00497   {
00498     if ((HAL_GetTick() - tickstart) > PWR_FLAG_SETTING_DELAY)
00499     {
00500       return HAL_ERROR;
00501     }
00502   }
00503 
00504   return HAL_OK;
00505 }
00506 
00507 /**
00508   * @brief Get the main internal regulator output voltage. Reflecting the last
00509   *        VOS value applied to the PMU.
00510   * @retval The current applied VOS selection.
00511   */
00512 uint32_t HAL_PWREx_GetVoltageRange (void)
00513 {
00514   /* Get the active voltage scaling */
00515   return (PWR->CSR1 & PWR_CSR1_ACTVOS);
00516 }
00517 
00518 /**
00519   * @brief Configure the main internal regulator output voltage in STOP mode.
00520   * @param  VoltageScaling : Specifies the regulator output voltage when the
00521   *         system enters Stop mode to achieve a tradeoff between performance
00522   *         and power consumption.
00523   *          This parameter can be one of the following values:
00524   *            @arg PWR_REGULATOR_SVOS_SCALE3 : Regulator voltage output range
00525   *                                             3 mode.
00526   *            @arg PWR_REGULATOR_SVOS_SCALE4 : Regulator voltage output range
00527   *                                             4 mode.
00528   *            @arg PWR_REGULATOR_SVOS_SCALE5 : Regulator voltage output range
00529   *                                             5 mode.
00530   * @note   The Stop mode voltage scaling for SVOS4 and SVOS5 sets the voltage
00531   *         regulator in Low-power (LP) mode to further reduce power consumption.
00532   *         When preselecting SVOS3, the use of the voltage regulator low-power
00533   *         mode (LP) can be selected by LPDS register bit.
00534   * @note   The selected SVOS4 and SVOS5 levels add an additional startup delay
00535   *         when exiting from system Stop mode.
00536   * @retval HAL Status.
00537   */
00538 HAL_StatusTypeDef HAL_PWREx_ControlStopModeVoltageScaling (uint32_t VoltageScaling)
00539 {
00540   /* Check the parameters */
00541   assert_param (IS_PWR_STOP_MODE_REGULATOR_VOLTAGE (VoltageScaling));
00542 
00543   /* Return the stop mode voltage range */
00544   MODIFY_REG (PWR->CR1, PWR_CR1_SVOS, VoltageScaling);
00545 
00546   return HAL_OK;
00547 }
00548 
00549 /**
00550   * @brief Get the main internal regulator output voltage in STOP mode.
00551   * @retval The actual applied VOS selection.
00552   */
00553 uint32_t HAL_PWREx_GetStopModeVoltageRange (void)
00554 {
00555   /* Return the stop voltage scaling */
00556   return (PWR->CR1 & PWR_CR1_SVOS);
00557 }
00558 /**
00559   * @}
00560   */
00561 
00562 /** @defgroup PWREx_Exported_Functions_Group2 Low Power Control Functions
00563   * @brief    Low power control functions
00564   *
00565 @verbatim
00566  ===============================================================================
00567                      ##### Low power control functions #####
00568  ===============================================================================
00569 
00570     *** Domains Low Power modes configuration ***
00571     =============================================
00572     [..]
00573       This section provides the extended low power mode control APIs.
00574       The system presents 3 principles domains (D1, D2 and D3) that can be
00575       operated in low-power modes (DSTOP or DSTANDBY mode):
00576 
00577       (+) DSTOP mode to enters a domain to STOP mode:
00578        (++) D1 domain and/or D2 domain enters DSTOP mode only when the CPU
00579             subsystem is in CSTOP mode and has allocated peripheral in the
00580             domain.
00581             In DSTOP mode the domain bus matrix clock is stopped.
00582        (++) The system enters STOP mode using one of the following scenarios:
00583         (+++) D1 domain enters DSTANDBY mode (powered off) and D2, D3 domains
00584               enter DSTOP mode.
00585         (+++) D2 domain enters DSTANDBY mode (powered off) and D1, D3 domains
00586               enter DSTOP mode.
00587         (+++) D3 domain enters DSTANDBY mode (powered off) and D1, D2 domains
00588               enter DSTOP mode.
00589         (+++) D1 and D2 domains enter DSTANDBY mode (powered off) and D3 domain
00590               enters DSTOP mode.
00591         (+++) D1 and D3 domains enter DSTANDBY mode (powered off) and D2 domain
00592               enters DSTOP mode.
00593         (+++) D2 and D3 domains enter DSTANDBY mode (powered off) and D1 domain
00594               enters DSTOP mode.
00595         (+++) D1, D2 and D3 domains enter DSTOP mode.
00596        (++) When the system enters STOP mode, the clocks are stopped and the
00597             regulator is running in main or low power mode.
00598        (++) D3 domain can be kept in Run mode regardless of the CPU status when
00599             enter STOP mode by using HAL_PWREx_ConfigD3Domain(D3State) function.
00600 
00601       (+) DSTANDBY mode to enters a domain to STANDBY mode:
00602        (++) The DSTANDBY mode is entered when the PDDS_Dn bit in PWR CPU control
00603             register (PWR_CPUCR) for the Dn domain selects Standby mode.
00604        (++) The system enters STANDBY mode only when D1, D2 and D3 domains enter
00605             DSTANDBY mode. Consequently the VCORE supply regulator is powered
00606             off.
00607 
00608    *** DSTOP mode ***
00609    ==================
00610     [..]
00611       In DStop mode the domain bus matrix clock is stopped.
00612       The Flash memory can enter low-power Stop mode when it is enabled through
00613       FLPS in PWR_CR1 register. This allows a trade-off between domain DStop
00614       restart time and low power consumption.
00615     [..]
00616       In DStop mode domain peripherals using the LSI or LSE clock and
00617       peripherals having a kernel clock request are still able to operate.
00618     [..]
00619       Before entering DSTOP mode it is recommended to call SCB_CleanDCache
00620       function in order to clean the D-Cache and guarantee the data integrity
00621       for the SRAM memories.
00622 
00623       (+) Entry:
00624          The DSTOP mode is entered using the HAL_PWREx_EnterSTOPMode(Regulator,
00625          STOPEntry, Domain) function with:
00626          (++) Regulator:
00627           (+++) PWR_MAINREGULATOR_ON     : Main regulator ON.
00628           (+++) PWR_LOWPOWERREGULATOR_ON : Low Power regulator ON.
00629          (++) STOPEntry:
00630           (+++) PWR_STOPENTRY_WFI : enter STOP mode with WFI instruction
00631           (+++) PWR_STOPENTRY_WFE : enter STOP mode with WFE instruction
00632          (++) Domain:
00633           (+++) PWR_D1_DOMAIN : Enters D1/CD domain to DSTOP mode.
00634           (+++) PWR_D2_DOMAIN : Enters D2 domain to DSTOP mode.
00635           (+++) PWR_D3_DOMAIN : Enters D3/SRD domain to DSTOP mode.
00636 
00637       (+) Exit:
00638         Any EXTI Line (Internal or External) configured in Interrupt/Event mode.
00639 
00640    *** DSTANDBY mode ***
00641    =====================
00642     [..]
00643       In DStandby mode:
00644         (+) The domain bus matrix clock is stopped.
00645         (+) The domain is powered down and the domain RAM and register contents
00646             are lost.
00647     [..]
00648       Before entering DSTANDBY mode it is recommended to call SCB_CleanDCache
00649       function in order to clean the D-Cache and guarantee the data integrity
00650       for the SRAM memories.
00651 
00652       (+) Entry:
00653          The DSTANDBY mode is entered using the HAL_PWREx_EnterSTANDBYMode
00654          (Domain) function with:
00655        (++) Domain:
00656         (+++) PWR_D1_DOMAIN : Enters D1/CD domain to DSTANDBY mode.
00657         (+++) PWR_D2_DOMAIN : Enters D2 domain to DSTANDBY mode.
00658         (+++) PWR_D3_DOMAIN : Enters D3/SRD domain to DSTANDBY mode.
00659 
00660       (+) Exit:
00661         WKUP pin rising or falling edge, RTC alarm (Alarm A and Alarm B), RTC
00662         wakeup, tamper event, time stamp event, external reset in NRST pin,
00663         IWDG reset.
00664 
00665    *** Keep D3/SRD in RUN mode ***
00666    ===============================
00667     [..]
00668       D3/SRD domain can be kept in Run mode regardless of the CPU status when
00669       entering STOP mode by using HAL_PWREx_ConfigD3Domain(D3State) function
00670       with :
00671        (+) D3State:
00672         (++) PWR_D3_DOMAIN_STOP : D3/SDR domain follows the CPU sub-system
00673                                   mode.
00674         (++) PWR_D3_DOMAIN_RUN : D3/SRD domain remains in Run mode regardless
00675                                  of CPU subsystem mode.
00676 
00677     *** FLASH Power Down configuration ****
00678     =======================================
00679     [..]
00680       By setting the FLPS bit in the PWR_CR1 register using the
00681       HAL_PWREx_EnableFlashPowerDown() function, the Flash memory also enters
00682       power down mode when the device enters STOP mode. When the Flash memory is
00683       in power down mode, an additional startup delay is incurred when waking up
00684       from STOP mode.
00685 
00686     *** Wakeup Pins configuration ****
00687     ===================================
00688     [..]
00689       Wakeup pins allow the system to exit from Standby mode. The configuration
00690       of wakeup pins is done with the HAL_PWREx_EnableWakeUpPin(sPinParams)
00691       function with:
00692        (+) sPinParams: structure to enable and configure a wakeup pin:
00693         (++) WakeUpPin: Wakeup pin to be enabled.
00694         (++) PinPolarity: Wakeup pin polarity (rising or falling edge).
00695         (++) PinPull: Wakeup pin pull (no pull, pull-up or pull-down).
00696     [..]
00697       The wakeup pins are internally connected to the EXTI lines [55-60] to
00698       generate an interrupt if enabled. The EXTI lines configuration is done by
00699       the HAL_EXTI_Dx_EventInputConfig() functions defined in the stm32h7xxhal.c
00700       file.
00701     [..]
00702       When a wakeup pin event is received the HAL_PWREx_WAKEUP_PIN_IRQHandler is
00703       called and the appropriate flag is set in the PWR_WKUPFR register. Then in
00704       the HAL_PWREx_WAKEUP_PIN_IRQHandler function the wakeup pin flag will be
00705       cleared and the appropriate user callback will be called. The user can add
00706       his own code by customization of function pointer HAL_PWREx_WKUPx_Callback.
00707 
00708 @endverbatim
00709   * @{
00710   */
00711 
00712 #if defined (PWR_CPUCR_RETDS_CD)
00713 /**
00714   * @brief Enter the system to STOP mode with main domain in DSTOP2.
00715   * @note   In STOP mode, the domain bus matrix clock is stalled.
00716   * @note   In STOP mode, memories and registers are maintained and peripherals
00717   *         in CPU domain are no longer operational.
00718   * @note   All clocks in the VCORE domain are stopped, the PLL, the HSI and the
00719   *         HSE oscillators are disabled. Only Peripherals that have wakeup
00720   *         capability can switch on the HSI to receive a frame, and switch off
00721   *         the HSI after receiving the frame if it is not a wakeup frame. In
00722   *         this case the HSI clock is propagated only to the peripheral
00723   *         requesting it.
00724   * @note   When exiting STOP mode by issuing an interrupt or a wakeup event,
00725   *         the HSI RC oscillator is selected as system clock if STOPWUCK bit in
00726   *         RCC_CFGR register is set.
00727   * @param  Regulator : Specifies the regulator state in STOP mode.
00728   *          This parameter can be one of the following values:
00729   *            @arg PWR_MAINREGULATOR_ON     : STOP mode with regulator ON.
00730   *            @arg PWR_LOWPOWERREGULATOR_ON : STOP mode with low power
00731   *                                            regulator ON.
00732   * @param  STOPEntry : Specifies if STOP mode in entered with WFI or WFE
00733   *                     intrinsic instruction.
00734   *          This parameter can be one of the following values:
00735   *            @arg PWR_STOPENTRY_WFI : Enter STOP mode with WFI instruction.
00736   *            @arg PWR_STOPENTRY_WFE : Enter STOP mode with WFE instruction.
00737   * @retval None.
00738   */
00739 void HAL_PWREx_EnterSTOP2Mode (uint32_t Regulator, uint8_t STOPEntry)
00740 {
00741   /* Check the parameters */
00742   assert_param (IS_PWR_REGULATOR (Regulator));
00743   assert_param (IS_PWR_STOP_ENTRY (STOPEntry));
00744 
00745   /* Select the regulator state in Stop mode */
00746   MODIFY_REG (PWR->CR1, PWR_CR1_LPDS, Regulator);
00747 
00748   /* Go to DStop2 mode (deep retention) when CPU domain enters Deepsleep */
00749   SET_BIT (PWR->CPUCR, PWR_CPUCR_RETDS_CD);
00750 
00751   /* Keep DSTOP mode when SmartRun domain enters Deepsleep */
00752   CLEAR_BIT (PWR->CPUCR, PWR_CPUCR_PDDS_SRD);
00753 
00754   /* Set SLEEPDEEP bit of Cortex System Control Register */
00755   SET_BIT (SCB->SCR, SCB_SCR_SLEEPDEEP_Msk);
00756 
00757   /* Ensure that all instructions are done before entering STOP mode */
00758   __ISB ();
00759   __DSB ();
00760 
00761   /* Select Stop mode entry */
00762   if (STOPEntry == PWR_STOPENTRY_WFI)
00763   {
00764     /* Request Wait For Interrupt */
00765     __WFI ();
00766   }
00767   else
00768   {
00769     /* Request Wait For Event */
00770     __WFE ();
00771   }
00772 
00773   /* Clear SLEEPDEEP bit of Cortex-Mx in the System Control Register */
00774   CLEAR_BIT (SCB->SCR, SCB_SCR_SLEEPDEEP_Msk);
00775 }
00776 #endif /* defined (PWR_CPUCR_RETDS_CD) */
00777 
00778 /**
00779   * @brief Enter a Domain to DSTOP mode.
00780   * @note   This API gives flexibility to manage independently each domain STOP
00781   *         mode. For dual core lines, this API should be executed with the
00782   *         corresponding Cortex-Mx to enter domain to DSTOP mode. When it is
00783   *         executed by all available Cortex-Mx, the system enter to STOP mode.
00784   *         For single core lines, calling this API with domain parameter set to
00785   *         PWR_D1_DOMAIN (D1/CD), the whole system will enter in STOP mode
00786   *         independently of PWR_CPUCR_PDDS_Dx bits values if RUN_D3 bit in the
00787   *         CPUCR_RUN_D3 is cleared.
00788   * @note   In DStop mode the domain bus matrix clock is stopped.
00789   * @note   The system D3/SRD domain enter Stop mode only when the CPU subsystem
00790   *         is in CStop mode, the EXTI wakeup sources are inactive and at least
00791   *         one PDDS_Dn bit in PWR CPU control register (PWR_CPUCR) for
00792   *         any domain request Stop.
00793   * @note   Before entering DSTOP mode it is recommended to call SCB_CleanDCache
00794   *         function in order to clean the D-Cache and guarantee the data
00795   *         integrity for the SRAM memories.
00796   * @note   In System Stop mode, the domain peripherals that use the LSI or LSE
00797   *         clock, and the peripherals that have a kernel clock request to
00798   *         select HSI or CSI as source, are still able to operate.
00799   * @param  Regulator : Specifies the regulator state in STOP mode.
00800   *          This parameter can be one of the following values:
00801   *            @arg PWR_MAINREGULATOR_ON     : STOP mode with regulator ON.
00802   *            @arg PWR_LOWPOWERREGULATOR_ON : STOP mode with low power
00803   *                                            regulator ON.
00804   * @param  STOPEntry : Specifies if STOP mode in entered with WFI or WFE
00805   *                     intrinsic instruction.
00806   *          This parameter can be one of the following values:
00807   *            @arg PWR_STOPENTRY_WFI : Enter STOP mode with WFI instruction.
00808   *            @arg PWR_STOPENTRY_WFE : Enter STOP mode with WFE instruction.
00809   * @param  Domain : Specifies the Domain to enter in DSTOP mode.
00810   *          This parameter can be one of the following values:
00811   *            @arg PWR_D1_DOMAIN : Enter D1/CD Domain to DSTOP mode.
00812   *            @arg PWR_D2_DOMAIN : Enter D2 Domain to DSTOP mode.
00813   *            @arg PWR_D3_DOMAIN : Enter D3/SRD Domain to DSTOP mode.
00814   * @retval None.
00815   */
00816 void HAL_PWREx_EnterSTOPMode (uint32_t Regulator, uint8_t STOPEntry, uint32_t Domain)
00817 {
00818   /* Check the parameters */
00819   assert_param (IS_PWR_REGULATOR (Regulator));
00820   assert_param (IS_PWR_STOP_ENTRY (STOPEntry));
00821   assert_param (IS_PWR_DOMAIN (Domain));
00822 
00823   /* Select the regulator state in Stop mode */
00824   MODIFY_REG (PWR->CR1, PWR_CR1_LPDS, Regulator);
00825 
00826   /* Select the domain Power Down DeepSleep */
00827   if (Domain == PWR_D1_DOMAIN)
00828   {
00829 #if defined (DUAL_CORE)
00830     /* Check current core */
00831     if (HAL_GetCurrentCPUID () != CM7_CPUID)
00832     {
00833       /*
00834          When the domain selected and the cortex-mx don't match, entering stop
00835          mode will not be performed
00836       */
00837       return;
00838     }
00839 #endif /* defined (DUAL_CORE) */
00840 
00841     /* Keep DSTOP mode when D1/CD domain enters Deepsleep */
00842     CLEAR_BIT (PWR->CPUCR, PWR_CPUCR_PDDS_D1);
00843 
00844     /* Set SLEEPDEEP bit of Cortex System Control Register */
00845     SET_BIT (SCB->SCR, SCB_SCR_SLEEPDEEP_Msk);
00846 
00847     /* Ensure that all instructions are done before entering STOP mode */
00848     __DSB ();
00849     __ISB ();
00850 
00851     /* Select Stop mode entry */
00852     if (STOPEntry == PWR_STOPENTRY_WFI)
00853     {
00854       /* Request Wait For Interrupt */
00855       __WFI ();
00856     }
00857     else
00858     {
00859       /* Request Wait For Event */
00860       __WFE ();
00861     }
00862 
00863     /* Clear SLEEPDEEP bit of Cortex-Mx in the System Control Register */
00864     CLEAR_BIT (SCB->SCR, SCB_SCR_SLEEPDEEP_Msk);
00865   }
00866 #if defined (PWR_CPUCR_PDDS_D2)
00867   else if (Domain == PWR_D2_DOMAIN)
00868   {
00869 #if defined (DUAL_CORE)
00870     /* Check current core */
00871     if (HAL_GetCurrentCPUID () != CM4_CPUID)
00872     {
00873       /*
00874          When the domain selected and the cortex-mx don't match, entering stop
00875          mode will not be performed
00876       */
00877       return;
00878     }
00879 
00880     /* Keep DSTOP mode when D2 domain enters Deepsleep */
00881     CLEAR_BIT (PWR->CPU2CR, PWR_CPU2CR_PDDS_D2);
00882 
00883     /* Set SLEEPDEEP bit of Cortex System Control Register */
00884     SET_BIT (SCB->SCR, SCB_SCR_SLEEPDEEP_Msk);
00885 
00886     /* Ensure that all instructions are done before entering STOP mode */
00887     __DSB ();
00888     __ISB ();
00889 
00890     /* Select Stop mode entry */
00891     if (STOPEntry == PWR_STOPENTRY_WFI)
00892     {
00893       /* Request Wait For Interrupt */
00894       __WFI ();
00895     }
00896     else
00897     {
00898       /* Request Wait For Event */
00899       __WFE ();
00900     }
00901 
00902     /* Clear SLEEPDEEP bit of Cortex-Mx in the System Control Register */
00903     CLEAR_BIT (SCB->SCR, SCB_SCR_SLEEPDEEP_Msk);
00904 #else
00905     /* Keep DSTOP mode when D2 domain enters Deepsleep */
00906     CLEAR_BIT (PWR->CPUCR, PWR_CPUCR_PDDS_D2);
00907 #endif  /* defined (DUAL_CORE) */
00908   }
00909 #endif /* defined (PWR_CPUCR_PDDS_D2) */
00910   else
00911   {
00912 #if defined (DUAL_CORE)
00913     /* Check current core */
00914     if (HAL_GetCurrentCPUID () == CM7_CPUID)
00915     {
00916       /* Keep DSTOP mode when D3 domain enters Deepsleep */
00917       CLEAR_BIT (PWR->CPUCR, PWR_CPUCR_PDDS_D3);
00918     }
00919     else
00920     {
00921       /* Keep DSTOP mode when D3 domain enters Deepsleep */
00922       CLEAR_BIT (PWR->CPU2CR, PWR_CPU2CR_PDDS_D3);
00923     }
00924 #else
00925     /* Keep DSTOP mode when D3/SRD domain enters Deepsleep */
00926     CLEAR_BIT (PWR->CPUCR, PWR_CPUCR_PDDS_D3);
00927 #endif  /* defined (DUAL_CORE) */
00928   }
00929 }
00930 
00931 /**
00932   * @brief Clear pending event.
00933   * @note   This API clears the pending event in order to enter a given CPU
00934   *         to CSLEEP or CSTOP. It should be called just before APIs performing
00935   *         enter low power mode using Wait For Event request.
00936   * @note   Cortex-M7 must be in CRUN mode when calling this API by Cortex-M4.
00937   * @retval None.
00938   */
00939 void HAL_PWREx_ClearPendingEvent (void)
00940 {
00941 #if defined (DUAL_CORE)
00942   /* Check the current Core */
00943   if (HAL_GetCurrentCPUID () == CM7_CPUID)
00944   {
00945     __WFE ();
00946   }
00947   else
00948   {
00949     __SEV ();
00950     __WFE ();
00951   }
00952 #else
00953   __WFE ();
00954 #endif /* defined (DUAL_CORE) */
00955 }
00956 
00957 /**
00958   * @brief Enter a Domain to DSTANDBY mode.
00959   * @note   This API gives flexibility to manage independently each domain
00960   *         STANDBY mode. For dual core lines, this API should be executed with
00961   *         the corresponding Cortex-Mx to enter domain to DSTANDBY mode. When
00962   *         it is executed by all available Cortex-Mx, the system enter STANDBY
00963   *         mode.
00964   *         For single core lines, calling this API with D1/SRD the selected
00965   *         domain will enter the whole system in STOP if PWR_CPUCR_PDDS_D3 = 0
00966   *         and enter the whole system in STANDBY if PWR_CPUCR_PDDS_D3 = 1.
00967   * @note   The DStandby mode is entered when all PDDS_Dn bits in PWR_CPUCR for
00968   *         the Dn domain select Standby mode. When the system enters Standby
00969   *         mode, the voltage regulator is disabled.
00970   * @note   When D2 or D3 domain is in DStandby mode and the CPU sets the
00971   *         domain PDDS_Dn bit to select Stop mode, the domain remains in
00972   *         DStandby mode. The domain will only exit DStandby when the CPU
00973   *         allocates a peripheral in the domain.
00974   * @note   The system D3/SRD domain enters Standby mode only when the D1 and D2
00975   *         domain are in DStandby.
00976   * @note   Before entering DSTANDBY mode it is recommended to call
00977   *         SCB_CleanDCache function in order to clean the D-Cache and guarantee
00978   *         the data integrity for the SRAM memories.
00979   * @param  Domain : Specifies the Domain to enter to STANDBY mode.
00980   *          This parameter can be one of the following values:
00981   *            @arg PWR_D1_DOMAIN: Enter D1/CD Domain to DSTANDBY mode.
00982   *            @arg PWR_D2_DOMAIN: Enter D2 Domain to DSTANDBY mode.
00983   *            @arg PWR_D3_DOMAIN: Enter D3/SRD Domain to DSTANDBY mode.
00984   * @retval None
00985   */
00986 void HAL_PWREx_EnterSTANDBYMode (uint32_t Domain)
00987 {
00988   /* Check the parameters */
00989   assert_param (IS_PWR_DOMAIN (Domain));
00990 
00991   /* Select the domain Power Down DeepSleep */
00992   if (Domain == PWR_D1_DOMAIN)
00993   {
00994 #if defined (DUAL_CORE)
00995     /* Check current core */
00996     if (HAL_GetCurrentCPUID () != CM7_CPUID)
00997     {
00998       /*
00999          When the domain selected and the cortex-mx don't match, entering
01000          standby mode will not be performed
01001       */
01002       return;
01003     }
01004 #endif /* defined (DUAL_CORE) */
01005 
01006     /* Allow DSTANDBY mode when D1/CD domain enters Deepsleep */
01007     SET_BIT (PWR-> CPUCR, PWR_CPUCR_PDDS_D1);
01008 
01009 #if defined (DUAL_CORE)
01010     /* Allow DSTANDBY mode when D1/CD domain enters Deepsleep */
01011     SET_BIT (PWR-> CPU2CR, PWR_CPU2CR_PDDS_D1);
01012 #endif /*DUAL_CORE*/
01013 
01014     /* Set SLEEPDEEP bit of Cortex System Control Register */
01015     SET_BIT (SCB->SCR, SCB_SCR_SLEEPDEEP_Msk);
01016 
01017     /* This option is used to ensure that store operations are completed */
01018 #if defined (__CC_ARM)
01019     __force_stores ();
01020 #endif /* defined (__CC_ARM) */
01021 
01022     /* Request Wait For Interrupt */
01023     __WFI ();
01024   }
01025 #if defined (PWR_CPUCR_PDDS_D2)
01026   else if (Domain == PWR_D2_DOMAIN)
01027   {
01028     /* Allow DSTANDBY mode when D2 domain enters Deepsleep */
01029     SET_BIT (PWR-> CPUCR, PWR_CPUCR_PDDS_D2);
01030 
01031 #if defined (DUAL_CORE)
01032     /* Check current core */
01033     if (HAL_GetCurrentCPUID () != CM4_CPUID)
01034     {
01035       /*
01036          When the domain selected and the cortex-mx don't match, entering
01037          standby mode will not be performed
01038       */
01039       return;
01040     }
01041 
01042     /* Allow DSTANDBY mode when D2 domain enters Deepsleep */
01043     SET_BIT (PWR-> CPU2CR, PWR_CPU2CR_PDDS_D2);
01044 
01045     /* Set SLEEPDEEP bit of Cortex System Control Register */
01046     SET_BIT (SCB->SCR, SCB_SCR_SLEEPDEEP_Msk);
01047 
01048     /* This option is used to ensure that store operations are completed */
01049 #if defined (__CC_ARM)
01050     __force_stores ();
01051 #endif /* defined (__CC_ARM) */
01052 
01053     /* Request Wait For Interrupt */
01054     __WFI ();
01055 #endif /* defined (DUAL_CORE) */
01056   }
01057 #endif /* defined (PWR_CPUCR_PDDS_D2) */
01058   else
01059   {
01060     /* Allow DSTANDBY mode when D3/SRD domain enters Deepsleep */
01061     SET_BIT (PWR->CPUCR, PWR_CPUCR_PDDS_D3);
01062 
01063 #if defined (DUAL_CORE)
01064     /* Allow DSTANDBY mode when D3/SRD domain enters Deepsleep */
01065     SET_BIT (PWR->CPU2CR, PWR_CPU2CR_PDDS_D3);
01066 #endif /* defined (DUAL_CORE) */
01067   }
01068 }
01069 
01070 /**
01071   * @brief Configure the D3/SRD Domain state when the System in low power mode.
01072   * @param  D3State : Specifies the D3/SRD state.
01073   *          This parameter can be one of the following values :
01074   *            @arg PWR_D3_DOMAIN_STOP : D3/SRD domain will follow the most deep
01075   *                                      CPU sub-system low power mode.
01076   *            @arg PWR_D3_DOMAIN_RUN : D3/SRD domain will stay in RUN mode
01077   *                                     regardless of the CPU sub-system low
01078   *                                     power mode.
01079   * @retval None
01080   */
01081 void HAL_PWREx_ConfigD3Domain (uint32_t D3State)
01082 {
01083   /* Check the parameter */
01084   assert_param (IS_D3_STATE (D3State));
01085 
01086   /* Keep D3/SRD in run mode */
01087   MODIFY_REG (PWR->CPUCR, PWR_CPUCR_RUN_D3, D3State);
01088 }
01089 
01090 #if defined (DUAL_CORE)
01091 /**
01092   * @brief Clear HOLD2F, HOLD1F, STOPF, SBF, SBF_D1, and SBF_D2 flags for a
01093   *        given domain.
01094   * @param  DomainFlags : Specifies the Domain flags to be cleared.
01095   *          This parameter can be one of the following values:
01096   *            @arg PWR_D1_DOMAIN_FLAGS : Clear D1 Domain flags.
01097   *            @arg PWR_D2_DOMAIN_FLAGS : Clear D2 Domain flags.
01098   *            @arg PWR_ALL_DOMAIN_FLAGS : Clear D1 and D2 Domain flags.
01099   * @retval None.
01100   */
01101 void HAL_PWREx_ClearDomainFlags (uint32_t DomainFlags)
01102 {
01103   /* Check the parameter */
01104   assert_param (IS_PWR_DOMAIN_FLAG (DomainFlags));
01105 
01106   /* D1 CPU flags */
01107   if (DomainFlags == PWR_D1_DOMAIN_FLAGS)
01108   {
01109     /* Clear D1 domain flags (HOLD2F, STOPF, SBF, SBF_D1, and SBF_D2) */
01110     SET_BIT (PWR->CPUCR, PWR_CPUCR_CSSF);
01111   }
01112   /* D2 CPU flags */
01113   else if (DomainFlags == PWR_D2_DOMAIN_FLAGS)
01114   {
01115     /* Clear D2 domain flags (HOLD1F, STOPF, SBF, SBF_D1, and SBF_D2) */
01116     SET_BIT (PWR->CPU2CR, PWR_CPU2CR_CSSF);
01117   }
01118   else
01119   {
01120     /* Clear D1 domain flags (HOLD2F, STOPF, SBF, SBF_D1, and SBF_D2) */
01121     SET_BIT (PWR->CPUCR, PWR_CPUCR_CSSF);
01122     /* Clear D2 domain flags (HOLD1F, STOPF, SBF, SBF_D1, and SBF_D2) */
01123     SET_BIT (PWR->CPU2CR, PWR_CPU2CR_CSSF);
01124   }
01125 }
01126 
01127 /**
01128   * @brief Hold the CPU and their domain peripherals when exiting STOP mode.
01129   * @param  CPU : Specifies the core to be held.
01130   *         This parameter can be one of the following values:
01131   *             @arg PWR_CORE_CPU1: Hold CPU1 and set CPU2 as master.
01132   *             @arg PWR_CORE_CPU2: Hold CPU2 and set CPU1 as master.
01133   * @retval HAL status
01134   */
01135 HAL_StatusTypeDef HAL_PWREx_HoldCore (uint32_t CPU)
01136 {
01137   HAL_StatusTypeDef status = HAL_OK;
01138 
01139   /* Check the parameters */
01140   assert_param (IS_PWR_CORE (CPU));
01141 
01142   /* Check CPU index */
01143   if (CPU == PWR_CORE_CPU2)
01144   {
01145     /* If CPU1 is not held */
01146     if ((PWR->CPU2CR & PWR_CPU2CR_HOLD1) != PWR_CPU2CR_HOLD1)
01147     {
01148       /* Set HOLD2 bit */
01149       SET_BIT (PWR->CPUCR, PWR_CPUCR_HOLD2);
01150     }
01151     else
01152     {
01153       status = HAL_ERROR;
01154     }
01155   }
01156   else
01157   {
01158     /* If CPU2 is not held */
01159     if ((PWR->CPUCR & PWR_CPUCR_HOLD2) != PWR_CPUCR_HOLD2)
01160     {
01161       /* Set HOLD1 bit */
01162       SET_BIT (PWR->CPU2CR, PWR_CPU2CR_HOLD1);
01163     }
01164     else
01165     {
01166       status = HAL_ERROR;
01167     }
01168   }
01169 
01170   return status;
01171 }
01172 
01173 /**
01174   * @brief Release the CPU and their domain peripherals after a wake-up from
01175   *        STOP mode.
01176   * @param  CPU: Specifies the core to be released.
01177   *         This parameter can be one of the following values:
01178   *             @arg  PWR_CORE_CPU1: Release the CPU1 and their domain
01179   *                   peripherals from holding.
01180   *             @arg  PWR_CORE_CPU2: Release the CPU2 and their domain
01181   *                   peripherals from holding.
01182   * @retval None
01183   */
01184 void HAL_PWREx_ReleaseCore (uint32_t CPU)
01185 {
01186   /* Check the parameters */
01187   assert_param (IS_PWR_CORE (CPU));
01188 
01189   /* Check CPU index */
01190   if (CPU == PWR_CORE_CPU2)
01191   {
01192     /* Reset HOLD2 bit */
01193     CLEAR_BIT (PWR->CPUCR, PWR_CPUCR_HOLD2);
01194   }
01195   else
01196   {
01197     /* Reset HOLD1 bit */
01198     CLEAR_BIT (PWR->CPU2CR, PWR_CPU2CR_HOLD1);
01199   }
01200 }
01201 #endif /* defined (DUAL_CORE) */
01202 
01203 
01204 /**
01205   * @brief Enable the Flash Power Down in Stop mode.
01206   * @note   When Flash Power Down is enabled  the Flash memory enters low-power
01207   *         mode when D1/SRD domain is in DStop mode. This feature allows to
01208   *         obtain the best trade-off between low-power consumption and restart
01209   *         time when exiting from DStop mode.
01210   * @retval None.
01211   */
01212 void HAL_PWREx_EnableFlashPowerDown (void)
01213 {
01214   /* Enable the Flash Power Down */
01215   SET_BIT (PWR->CR1, PWR_CR1_FLPS);
01216 }
01217 
01218 /**
01219   * @brief Disable the Flash Power Down in Stop mode.
01220   * @note   When Flash Power Down is disabled  the Flash memory is kept on
01221   *         normal mode when D1/SRD domain is in DStop mode. This feature allows
01222   *         to obtain the best trade-off between low-power consumption and
01223   *         restart time when exiting from DStop mode.
01224   * @retval None.
01225   */
01226 void HAL_PWREx_DisableFlashPowerDown (void)
01227 {
01228   /* Disable the Flash Power Down */
01229   CLEAR_BIT (PWR->CR1, PWR_CR1_FLPS);
01230 }
01231 
01232 #if defined (PWR_CR1_SRDRAMSO)
01233 /**
01234   * @brief Enable memory block shut-off in DStop or DStop2 modes
01235   * @note   In DStop or DStop2 mode, the content of the memory blocks is
01236   *         maintained. Further power optimization can be obtained by switching
01237   *         off some memory blocks. This optimization implies loss of the memory
01238   *         content. The user can select which memory is discarded during STOP
01239   *         mode by means of xxSO bits.
01240   * @param  MemoryBlock : Specifies the memory block to shut-off during DStop or
01241   *                       DStop2 mode.
01242   *          This parameter can be one of the following values:
01243   *            @arg PWR_SRD_AHB_MEMORY_BLOCK : SmartRun domain AHB memory.
01244   *            @arg PWR_USB_FDCAN_MEMORY_BLOCK : High-speed interfaces USB and
01245   *                                              FDCAN memories.
01246   *            @arg PWR_GFXMMU_JPEG_MEMORY_BLOCK : GFXMMU and JPEG memories.
01247   *            @arg PWR_TCM_ECM_MEMORY_BLOCK : Instruction TCM and ETM memories.
01248   *            @arg PWR_RAM1_AHB_MEMORY_BLOCK : AHB RAM1 memory.
01249   *            @arg PWR_RAM2_AHB_MEMORY_BLOCK : AHB RAM2 memory.
01250   *            @arg PWR_RAM1_AXI_MEMORY_BLOCK : AXI RAM1 memory.
01251   *            @arg PWR_RAM2_AXI_MEMORY_BLOCK : AXI RAM2 memory.
01252   *            @arg PWR_RAM3_AXI_MEMORY_BLOCK : AXI RAM3 memory.
01253   * @retval None.
01254   */
01255 void HAL_PWREx_EnableMemoryShutOff (uint32_t MemoryBlock)
01256 {
01257   /* Check the parameter */
01258   assert_param (IS_PWR_MEMORY_BLOCK (MemoryBlock));
01259 
01260   /* Enable memory block shut-off */
01261   SET_BIT (PWR->CR1, MemoryBlock);
01262 }
01263 
01264 /**
01265   * @brief Disable memory block shut-off in DStop or DStop2 modes
01266   * @param  MemoryBlock : Specifies the memory block to keep content during
01267   *                       DStop or DStop2 mode.
01268   *          This parameter can be one of the following values:
01269   *            @arg PWR_SRD_AHB_MEMORY_BLOCK : SmartRun domain AHB memory.
01270   *            @arg PWR_USB_FDCAN_MEMORY_BLOCK : High-speed interfaces USB and
01271   *                                              FDCAN memories.
01272   *            @arg PWR_GFXMMU_JPEG_MEMORY_BLOCK : GFXMMU and JPEG memories.
01273   *            @arg PWR_TCM_ECM_MEMORY_BLOCK : Instruction TCM and ETM memories.
01274   *            @arg PWR_RAM1_AHB_MEMORY_BLOCK : AHB RAM1 memory.
01275   *            @arg PWR_RAM2_AHB_MEMORY_BLOCK : AHB RAM2 memory.
01276   *            @arg PWR_RAM1_AXI_MEMORY_BLOCK : AXI RAM1 memory.
01277   *            @arg PWR_RAM2_AXI_MEMORY_BLOCK : AXI RAM2 memory.
01278   *            @arg PWR_RAM3_AXI_MEMORY_BLOCK : AXI RAM3 memory.
01279   * @retval None.
01280   */
01281 void HAL_PWREx_DisableMemoryShutOff (uint32_t MemoryBlock)
01282 {
01283   /* Check the parameter */
01284   assert_param (IS_PWR_MEMORY_BLOCK (MemoryBlock));
01285 
01286   /* Disable memory block shut-off */
01287   CLEAR_BIT (PWR->CR1, MemoryBlock);
01288 }
01289 #endif /* defined (PWR_CR1_SRDRAMSO) */
01290 
01291 /**
01292   * @brief Enable the Wake-up PINx functionality.
01293   * @param  sPinParams : Pointer to a PWREx_WakeupPinTypeDef structure that
01294   *                      contains the configuration information for the wake-up
01295   *                      Pin.
01296   * @note   For dual core devices, please ensure to configure the EXTI lines for
01297   *         the different Cortex-Mx. All combination are allowed: wake up only
01298   *         Cortex-M7, wake up only Cortex-M4 and wake up Cortex-M7 and
01299   *         Cortex-M4.
01300   * @retval None.
01301   */
01302 void HAL_PWREx_EnableWakeUpPin (PWREx_WakeupPinTypeDef *sPinParams)
01303 {
01304   uint32_t pinConfig;
01305   uint32_t regMask;
01306   const uint32_t pullMask = PWR_WKUPEPR_WKUPPUPD1;
01307 
01308   /* Check the parameters */
01309   assert_param (IS_PWR_WAKEUP_PIN (sPinParams->WakeUpPin));
01310   assert_param (IS_PWR_WAKEUP_PIN_POLARITY (sPinParams->PinPolarity));
01311   assert_param (IS_PWR_WAKEUP_PIN_PULL (sPinParams->PinPull));
01312 
01313   pinConfig = sPinParams->WakeUpPin | \
01314               (sPinParams->PinPolarity << ((POSITION_VAL(sPinParams->WakeUpPin) + PWR_WKUPEPR_WKUPP1_Pos) & 0x1FU)) | \
01315               (sPinParams->PinPull << (((POSITION_VAL(sPinParams->WakeUpPin) * PWR_WAKEUP_PINS_PULL_SHIFT_OFFSET) + PWR_WKUPEPR_WKUPPUPD1_Pos) & 0x1FU));
01316 
01317   regMask   = sPinParams->WakeUpPin | \
01318               (PWR_WKUPEPR_WKUPP1 << (POSITION_VAL(sPinParams->WakeUpPin) & 0x1FU)) | \
01319               (pullMask << ((POSITION_VAL(sPinParams->WakeUpPin) * PWR_WAKEUP_PINS_PULL_SHIFT_OFFSET) & 0x1FU));
01320 
01321   /* Enable and Specify the Wake-Up pin polarity and the pull configuration
01322      for the event detection (rising or falling edge) */
01323   MODIFY_REG (PWR->WKUPEPR, regMask, pinConfig);
01324 #ifndef DUAL_CORE
01325   /* Configure the Wakeup Pin EXTI Line */
01326   MODIFY_REG (EXTI->IMR2, PWR_EXTI_WAKEUP_PINS_MASK, (sPinParams->WakeUpPin << EXTI_IMR2_IM55_Pos));
01327 #endif /* !DUAL_CORE */
01328 }
01329 
01330 /**
01331   * @brief Disable the Wake-up PINx functionality.
01332   * @param  WakeUpPin : Specifies the Wake-Up pin to be disabled.
01333   *          This parameter can be one of the following values:
01334   *           @arg PWR_WAKEUP_PIN1 : Disable PA0  wake-up PIN.
01335   *           @arg PWR_WAKEUP_PIN2 : Disable PA2  wake-up PIN.
01336   *           @arg PWR_WAKEUP_PIN3 : Disable PI8  wake-up PIN.
01337   *           @arg PWR_WAKEUP_PIN4 : Disable PC13 wake-up PIN.
01338   *           @arg PWR_WAKEUP_PIN5 : Disable PI11 wake-up PIN.
01339   *           @arg PWR_WAKEUP_PIN6 : Disable PC1  wake-up PIN.
01340   * @note   The PWR_WAKEUP_PIN3 and PWR_WAKEUP_PIN5 are available only for
01341   *         devices that support GPIOI port.
01342   * @retval None
01343   */
01344 void HAL_PWREx_DisableWakeUpPin (uint32_t WakeUpPin)
01345 {
01346   /* Check the parameter */
01347   assert_param (IS_PWR_WAKEUP_PIN (WakeUpPin));
01348 
01349   /* Disable the WakeUpPin */
01350   CLEAR_BIT (PWR->WKUPEPR, WakeUpPin);
01351 }
01352 
01353 /**
01354   * @brief Get the Wake-Up Pin pending flags.
01355   * @param  WakeUpFlag : Specifies the Wake-Up PIN flag to be checked.
01356   *          This parameter can be one of the following values:
01357   *            @arg PWR_WAKEUP_FLAG1    : Get wakeup event received from PA0.
01358   *            @arg PWR_WAKEUP_FLAG2    : Get wakeup event received from PA2.
01359   *            @arg PWR_WAKEUP_FLAG3    : Get wakeup event received from PI8.
01360   *            @arg PWR_WAKEUP_FLAG4    : Get wakeup event received from PC13.
01361   *            @arg PWR_WAKEUP_FLAG5    : Get wakeup event received from PI11.
01362   *            @arg PWR_WAKEUP_FLAG6    : Get wakeup event received from PC1.
01363   *            @arg PWR_WAKEUP_FLAG_ALL : Get Wakeup event received from all
01364   *                                      wake up pins.
01365   * @note   The PWR_WAKEUP_FLAG3 and PWR_WAKEUP_FLAG5 are available only for
01366   *         devices that support GPIOI port.
01367   * @retval The Wake-Up pin flag.
01368   */
01369 uint32_t HAL_PWREx_GetWakeupFlag (uint32_t WakeUpFlag)
01370 {
01371   /* Check the parameters */
01372   assert_param (IS_PWR_WAKEUP_FLAG (WakeUpFlag));
01373 
01374   /* Return the wake up pin flag */
01375   return (PWR->WKUPFR & WakeUpFlag);
01376 }
01377 
01378 /**
01379   * @brief Clear the Wake-Up pin pending flag.
01380   * @param  WakeUpFlag: Specifies the Wake-Up PIN flag to clear.
01381   *          This parameter can be one of the following values:
01382   *            @arg PWR_WAKEUP_FLAG1 : Clear the wakeup event received from PA0.
01383   *            @arg PWR_WAKEUP_FLAG2 : Clear the wakeup event received from PA2.
01384   *            @arg PWR_WAKEUP_FLAG3 : Clear the wakeup event received from PI8.
01385   *            @arg PWR_WAKEUP_FLAG4 : Clear the wakeup event received from PC13.
01386   *            @arg PWR_WAKEUP_FLAG5 : Clear the wakeup event received from PI11.
01387   *            @arg PWR_WAKEUP_FLAG6 : Clear the wakeup event received from PC1.
01388   *            @arg PWR_WAKEUP_FLAG_ALL : Clear the wakeup events received from
01389   *                                      all wake up pins.
01390   * @note   The PWR_WAKEUP_FLAG3 and PWR_WAKEUP_FLAG5 are available only for
01391   *         devices that support GPIOI port.
01392   * @retval HAL status.
01393   */
01394 HAL_StatusTypeDef HAL_PWREx_ClearWakeupFlag (uint32_t WakeUpFlag)
01395 {
01396   /* Check the parameter */
01397   assert_param (IS_PWR_WAKEUP_FLAG (WakeUpFlag));
01398 
01399   /* Clear the wake up event received from wake up pin x */
01400   SET_BIT (PWR->WKUPCR, WakeUpFlag);
01401 
01402   /* Check if the wake up event is well cleared */
01403   if ((PWR->WKUPFR & WakeUpFlag) != 0U)
01404   {
01405     return HAL_ERROR;
01406   }
01407 
01408   return HAL_OK;
01409 }
01410 
01411 /**
01412   * @brief This function handles the PWR WAKEUP PIN interrupt request.
01413   * @note   This API should be called under the WAKEUP_PIN_IRQHandler().
01414   * @retval None.
01415   */
01416 void HAL_PWREx_WAKEUP_PIN_IRQHandler (void)
01417 {
01418   /* Wakeup pin EXTI line interrupt detected */
01419   if (READ_BIT(PWR->WKUPFR, PWR_WKUPFR_WKUPF1) != 0U)
01420   {
01421     /* Clear PWR WKUPF1 flag */
01422     __HAL_PWR_CLEAR_WAKEUPFLAG (PWR_FLAG_WKUP1);
01423 
01424     /* PWR WKUP1 interrupt user callback */
01425     HAL_PWREx_WKUP1_Callback ();
01426   }
01427   else if (READ_BIT (PWR->WKUPFR, PWR_WKUPFR_WKUPF2) != 0U)
01428   {
01429     /* Clear PWR WKUPF2 flag */
01430     __HAL_PWR_CLEAR_WAKEUPFLAG (PWR_FLAG_WKUP2);
01431 
01432     /* PWR WKUP2 interrupt user callback */
01433     HAL_PWREx_WKUP2_Callback ();
01434   }
01435 #if defined (PWR_WKUPFR_WKUPF3)
01436   else if (READ_BIT (PWR->WKUPFR, PWR_WKUPFR_WKUPF3) != 0U)
01437   {
01438     /* Clear PWR WKUPF3 flag */
01439     __HAL_PWR_CLEAR_WAKEUPFLAG (PWR_FLAG_WKUP3);
01440 
01441     /* PWR WKUP3 interrupt user callback */
01442     HAL_PWREx_WKUP3_Callback ();
01443   }
01444 #endif /* defined (PWR_WKUPFR_WKUPF3) */
01445   else if (READ_BIT (PWR->WKUPFR, PWR_WKUPFR_WKUPF4) != 0U)
01446   {
01447     /* Clear PWR WKUPF4 flag */
01448     __HAL_PWR_CLEAR_WAKEUPFLAG (PWR_FLAG_WKUP4);
01449 
01450     /* PWR WKUP4 interrupt user callback */
01451     HAL_PWREx_WKUP4_Callback ();
01452   }
01453 #if defined (PWR_WKUPFR_WKUPF5)
01454   else if (READ_BIT (PWR->WKUPFR, PWR_WKUPFR_WKUPF5) != 0U)
01455   {
01456     /* Clear PWR WKUPF5 flag */
01457     __HAL_PWR_CLEAR_WAKEUPFLAG (PWR_FLAG_WKUP5);
01458 
01459     /* PWR WKUP5 interrupt user callback */
01460     HAL_PWREx_WKUP5_Callback ();
01461   }
01462 #endif /* defined (PWR_WKUPFR_WKUPF5) */
01463   else
01464   {
01465     /* Clear PWR WKUPF6 flag */
01466     __HAL_PWR_CLEAR_WAKEUPFLAG (PWR_FLAG_WKUP6);
01467 
01468     /* PWR WKUP6 interrupt user callback */
01469     HAL_PWREx_WKUP6_Callback ();
01470   }
01471 }
01472 
01473 /**
01474   * @brief PWR WKUP1 interrupt callback.
01475   * @retval None.
01476   */
01477 __weak void HAL_PWREx_WKUP1_Callback (void)
01478 {
01479   /* NOTE : This function should not be modified, when the callback is needed,
01480             the HAL_PWREx_WKUP1Callback can be implemented in the user file
01481   */
01482 }
01483 
01484 /**
01485   * @brief PWR WKUP2 interrupt callback.
01486   * @retval None.
01487   */
01488 __weak void HAL_PWREx_WKUP2_Callback (void)
01489 {
01490   /* NOTE : This function should not be modified, when the callback is needed,
01491             the HAL_PWREx_WKUP2Callback can be implemented in the user file
01492   */
01493 }
01494 
01495 #if defined (PWR_WKUPFR_WKUPF3)
01496 /**
01497   * @brief PWR WKUP3 interrupt callback.
01498   * @retval None.
01499   */
01500 __weak void HAL_PWREx_WKUP3_Callback (void)
01501 {
01502   /* NOTE : This function should not be modified, when the callback is needed,
01503             the HAL_PWREx_WKUP3Callback can be implemented in the user file
01504   */
01505 }
01506 #endif /* defined (PWR_WKUPFR_WKUPF3) */
01507 
01508 /**
01509   * @brief PWR WKUP4 interrupt callback.
01510   * @retval None.
01511   */
01512 __weak void HAL_PWREx_WKUP4_Callback (void)
01513 {
01514   /* NOTE : This function should not be modified, when the callback is needed,
01515             the HAL_PWREx_WKUP4Callback can be implemented in the user file
01516   */
01517 }
01518 
01519 #if defined (PWR_WKUPFR_WKUPF5)
01520 /**
01521   * @brief PWR WKUP5 interrupt callback.
01522   * @retval None.
01523   */
01524 __weak void HAL_PWREx_WKUP5_Callback (void)
01525 {
01526   /* NOTE : This function should not be modified, when the callback is needed,
01527             the HAL_PWREx_WKUP5Callback can be implemented in the user file
01528   */
01529 }
01530 #endif /* defined (PWR_WKUPFR_WKUPF5) */
01531 
01532 /**
01533   * @brief PWR WKUP6 interrupt callback.
01534   * @retval None.
01535   */
01536 __weak void HAL_PWREx_WKUP6_Callback (void)
01537 {
01538   /* NOTE : This function should not be modified, when the callback is needed,
01539             the HAL_PWREx_WKUP6Callback can be implemented in the user file
01540   */
01541 }
01542 /**
01543   * @}
01544   */
01545 
01546 /** @defgroup PWREx_Exported_Functions_Group3 Peripherals control functions
01547   * @brief    Peripherals control functions
01548   *
01549 @verbatim
01550  ===============================================================================
01551                  ##### Peripherals control functions #####
01552  ===============================================================================
01553 
01554     *** Main and Backup Regulators configuration ***
01555     ================================================
01556     [..]
01557       (+) The backup domain includes 4 Kbytes of backup SRAM accessible only
01558           from the CPU, and addressed in 32-bit, 16-bit or 8-bit mode. Its
01559           content is retained even in Standby or VBAT mode when the low power
01560           backup regulator is enabled. It can be considered as an internal
01561           EEPROM when VBAT is always present. You can use the
01562           HAL_PWREx_EnableBkUpReg() function to enable the low power backup
01563           regulator.
01564       (+) When the backup domain is supplied by VDD (analog switch connected to
01565           VDD) the backup SRAM is powered from VDD which replaces the VBAT power
01566           supply to save battery life.
01567       (+) The backup SRAM is not mass erased by a tamper event. It is read
01568           protected to prevent confidential data, such as cryptographic private
01569           key, from being accessed. The backup SRAM can be erased only through
01570           the Flash interface when a protection level change from level 1 to
01571           level 0 is requested.
01572       -@- Refer to the description of Read protection (RDP) in the Flash
01573           programming manual.
01574       (+) The main internal regulator can be configured to have a tradeoff
01575           between performance and power consumption when the device does not
01576           operate at the maximum frequency. This is done through
01577           HAL_PWREx_ControlVoltageScaling(VOS) function which configure the VOS
01578           bit in PWR_D3CR register.
01579       (+) The main internal regulator can be configured to operate in Low Power
01580           mode when the system enters STOP mode to further reduce power
01581           consumption.
01582           This is done through HAL_PWREx_ControlStopModeVoltageScaling(SVOS)
01583           function which configure the SVOS bit in PWR_CR1 register.
01584           The selected SVOS4 and SVOS5 levels add an additional startup delay
01585           when exiting from system Stop mode.
01586     -@- Refer to the product datasheets for more details.
01587 
01588     *** USB Regulator configuration ***
01589     ===================================
01590     [..]
01591       (+) The USB transceivers are supplied from a dedicated VDD33USB supply
01592           that can be provided either by the integrated USB regulator, or by an
01593           external USB supply.
01594       (+) The USB regulator is enabled by HAL_PWREx_EnableUSBReg() function, the
01595           VDD33USB is then provided from the USB regulator.
01596       (+) When the USB regulator is enabled, the VDD33USB supply level detector
01597           shall be enabled through  HAL_PWREx_EnableUSBVoltageDetector()
01598           function.
01599       (+) The USB regulator is disabled through HAL_PWREx_DisableUSBReg()
01600           function and VDD33USB can be provided from an external supply. In this
01601           case VDD33USB and VDD50USB shall be connected together.
01602 
01603     *** VBAT battery charging ***
01604     =============================
01605     [..]
01606       (+) When VDD is present, the external battery connected to VBAT can be
01607           charged through an internal resistance. VBAT charging can be performed
01608           either through a 5 KOhm resistor or through a 1.5 KOhm resistor.
01609       (+) VBAT charging is enabled by HAL_PWREx_EnableBatteryCharging
01610           (ResistorValue) function with:
01611        (++) ResistorValue:
01612         (+++) PWR_BATTERY_CHARGING_RESISTOR_5: 5 KOhm resistor.
01613         (+++) PWR_BATTERY_CHARGING_RESISTOR_1_5: 1.5 KOhm resistor.
01614       (+) VBAT charging is disabled by HAL_PWREx_DisableBatteryCharging()
01615           function.
01616 
01617 @endverbatim
01618   * @{
01619   */
01620 
01621 /**
01622   * @brief Enable the Backup Regulator.
01623   * @retval HAL status.
01624   */
01625 HAL_StatusTypeDef HAL_PWREx_EnableBkUpReg (void)
01626 {
01627   uint32_t tickstart;
01628 
01629   /* Enable the Backup regulator */
01630   SET_BIT (PWR->CR2, PWR_CR2_BREN);
01631 
01632   /* Get tick */
01633   tickstart = HAL_GetTick ();
01634 
01635   /* Wait till Backup regulator ready flag is set */
01636   while (__HAL_PWR_GET_FLAG (PWR_FLAG_BRR) == 0U)
01637   {
01638     if ((HAL_GetTick() - tickstart ) > PWR_FLAG_SETTING_DELAY)
01639     {
01640       return HAL_ERROR;
01641     }
01642   }
01643 
01644   return HAL_OK;
01645 }
01646 
01647 /**
01648   * @brief Disable the Backup Regulator.
01649   * @retval HAL status.
01650   */
01651 HAL_StatusTypeDef HAL_PWREx_DisableBkUpReg (void)
01652 {
01653   uint32_t tickstart;
01654 
01655   /* Disable the Backup regulator */
01656   CLEAR_BIT (PWR->CR2, PWR_CR2_BREN);
01657 
01658   /* Get tick */
01659   tickstart = HAL_GetTick ();
01660 
01661   /* Wait till Backup regulator ready flag is reset */
01662   while (__HAL_PWR_GET_FLAG (PWR_FLAG_BRR) != 0U)
01663   {
01664     if ((HAL_GetTick() - tickstart ) > PWR_FLAG_SETTING_DELAY)
01665     {
01666       return HAL_ERROR;
01667     }
01668   }
01669 
01670   return HAL_OK;
01671 }
01672 
01673 /**
01674   * @brief Enable the USB Regulator.
01675   * @retval HAL status.
01676   */
01677 HAL_StatusTypeDef HAL_PWREx_EnableUSBReg (void)
01678 {
01679   uint32_t tickstart;
01680 
01681   /* Enable the USB regulator */
01682   SET_BIT (PWR->CR3, PWR_CR3_USBREGEN);
01683 
01684   /* Get tick */
01685   tickstart = HAL_GetTick ();
01686 
01687   /* Wait till the USB regulator ready flag is set */
01688   while (__HAL_PWR_GET_FLAG (PWR_FLAG_USB33RDY) == 0U)
01689   {
01690     if ((HAL_GetTick() - tickstart ) > PWR_FLAG_SETTING_DELAY)
01691     {
01692       return HAL_ERROR;
01693     }
01694   }
01695 
01696   return HAL_OK;
01697 }
01698 
01699 /**
01700   * @brief Disable the USB Regulator.
01701   * @retval HAL status.
01702   */
01703 HAL_StatusTypeDef HAL_PWREx_DisableUSBReg (void)
01704 {
01705   uint32_t tickstart;
01706 
01707   /* Disable the USB regulator */
01708   CLEAR_BIT (PWR->CR3, PWR_CR3_USBREGEN);
01709 
01710   /* Get tick */
01711   tickstart = HAL_GetTick ();
01712 
01713   /* Wait till the USB regulator ready flag is reset */
01714   while(__HAL_PWR_GET_FLAG (PWR_FLAG_USB33RDY) != 0U)
01715   {
01716     if ((HAL_GetTick() - tickstart ) > PWR_FLAG_SETTING_DELAY)
01717     {
01718       return HAL_ERROR;
01719     }
01720   }
01721 
01722   return HAL_OK;
01723 }
01724 
01725 /**
01726   * @brief Enable the USB voltage level detector.
01727   * @retval None.
01728   */
01729 void HAL_PWREx_EnableUSBVoltageDetector (void)
01730 {
01731   /* Enable the USB voltage detector */
01732   SET_BIT (PWR->CR3, PWR_CR3_USB33DEN);
01733 }
01734 
01735 /**
01736   * @brief Disable the USB voltage level detector.
01737   * @retval None.
01738   */
01739 void HAL_PWREx_DisableUSBVoltageDetector (void)
01740 {
01741   /* Disable the USB voltage detector */
01742   CLEAR_BIT (PWR->CR3, PWR_CR3_USB33DEN);
01743 }
01744 
01745 /**
01746   * @brief Enable the Battery charging.
01747   * @note   When VDD is present, charge the external battery through an internal
01748   *         resistor.
01749   * @param  ResistorValue : Specifies the charging resistor.
01750   *          This parameter can be one of the following values :
01751   *            @arg PWR_BATTERY_CHARGING_RESISTOR_5 : 5 KOhm resistor.
01752   *            @arg PWR_BATTERY_CHARGING_RESISTOR_1_5 : 1.5 KOhm resistor.
01753   * @retval None.
01754   */
01755 void HAL_PWREx_EnableBatteryCharging (uint32_t ResistorValue)
01756 {
01757   /* Check the parameter */
01758   assert_param (IS_PWR_BATTERY_RESISTOR_SELECT (ResistorValue));
01759 
01760   /* Specify the charging resistor */
01761   MODIFY_REG (PWR->CR3, PWR_CR3_VBRS, ResistorValue);
01762 
01763   /* Enable the Battery charging */
01764   SET_BIT (PWR->CR3, PWR_CR3_VBE);
01765 }
01766 
01767 /**
01768   * @brief Disable the Battery charging.
01769   * @retval None.
01770   */
01771 void HAL_PWREx_DisableBatteryCharging (void)
01772 {
01773   /* Disable the Battery charging */
01774   CLEAR_BIT (PWR->CR3, PWR_CR3_VBE);
01775 }
01776 
01777 #if defined (PWR_CR1_BOOSTE)
01778 /**
01779   * @brief Enable the booster to guarantee the analog switch AC performance when
01780   *        the VDD supply voltage is below 2V7.
01781   * @note   The VDD supply voltage can be monitored through the PVD and the PLS
01782   *         field bits.
01783   * @retval None.
01784   */
01785 void HAL_PWREx_EnableAnalogBooster (void)
01786 {
01787   /* Enable the Analog voltage */
01788   SET_BIT (PWR->CR1, PWR_CR1_AVD_READY);
01789 
01790   /* Enable VDDA booster */
01791   SET_BIT (PWR->CR1, PWR_CR1_BOOSTE);
01792 }
01793 
01794 /**
01795   * @brief Disable the analog booster.
01796   * @retval None.
01797   */
01798 void HAL_PWREx_DisableAnalogBooster (void)
01799 {
01800   /* Disable VDDA booster */
01801   CLEAR_BIT (PWR->CR1, PWR_CR1_BOOSTE);
01802 
01803   /* Disable the Analog voltage */
01804   CLEAR_BIT (PWR->CR1, PWR_CR1_AVD_READY);
01805 }
01806 #endif /* defined (PWR_CR1_BOOSTE) */
01807 /**
01808   * @}
01809   */
01810 
01811 /** @defgroup PWREx_Exported_Functions_Group4 Power Monitoring functions
01812   * @brief    Power Monitoring functions
01813   *
01814 @verbatim
01815  ===============================================================================
01816                  ##### Power Monitoring functions #####
01817  ===============================================================================
01818 
01819     *** VBAT and Temperature supervision ***
01820     ========================================
01821     [..]
01822       (+) The VBAT battery voltage supply can be monitored by comparing it with
01823           two threshold levels: VBAThigh and VBATlow. VBATH flag and VBATL flags
01824           in the PWR control register 2 (PWR_CR2), indicate if VBAT is higher or
01825           lower than the threshold.
01826       (+) The temperature can be monitored by comparing it with two threshold
01827           levels, TEMPhigh and TEMPlow. TEMPH and TEMPL flags, in the PWR
01828           control register 2 (PWR_CR2), indicate whether the device temperature
01829           is higher or lower than the threshold.
01830       (+) The VBAT and the temperature monitoring is enabled by
01831           HAL_PWREx_EnableMonitoring() function and disabled by
01832           HAL_PWREx_DisableMonitoring() function.
01833       (+) The HAL_PWREx_GetVBATLevel() function returns the VBAT level which can
01834           be : PWR_VBAT_BELOW_LOW_THRESHOLD or PWR_VBAT_ABOVE_HIGH_THRESHOLD or
01835           PWR_VBAT_BETWEEN_HIGH_LOW_THRESHOLD.
01836       (+) The HAL_PWREx_GetTemperatureLevel() function returns the Temperature
01837           level which can be :
01838           PWR_TEMP_BELOW_LOW_THRESHOLD or PWR_TEMP_ABOVE_HIGH_THRESHOLD or
01839           PWR_TEMP_BETWEEN_HIGH_LOW_THRESHOLD.
01840 
01841     *** AVD configuration ***
01842     =========================
01843     [..]
01844       (+) The AVD is used to monitor the VDDA power supply by comparing it to a
01845           threshold selected by the AVD Level (ALS[3:0] bits in the PWR_CR1
01846           register).
01847       (+) A AVDO flag is available to indicate if VDDA is higher or lower
01848           than the AVD threshold. This event is internally connected to the EXTI
01849           line 16 to generate an interrupt if enabled.
01850           It is configurable through __HAL_PWR_AVD_EXTI_ENABLE_IT() macro.
01851       (+) The AVD is stopped in System Standby mode.
01852 
01853 @endverbatim
01854   * @{
01855   */
01856 
01857 /**
01858   * @brief Enable the VBAT and temperature monitoring.
01859   * @retval HAL status.
01860   */
01861 void HAL_PWREx_EnableMonitoring (void)
01862 {
01863   /* Enable the VBAT and Temperature monitoring */
01864   SET_BIT (PWR->CR2, PWR_CR2_MONEN);
01865 }
01866 
01867 /**
01868   * @brief Disable the VBAT and temperature monitoring.
01869   * @retval HAL status.
01870   */
01871 void HAL_PWREx_DisableMonitoring (void)
01872 {
01873   /* Disable the VBAT and Temperature monitoring */
01874   CLEAR_BIT (PWR->CR2, PWR_CR2_MONEN);
01875 }
01876 
01877 /**
01878   * @brief Indicate whether the junction temperature is between, above or below
01879   *        the thresholds.
01880   * @retval Temperature level.
01881   */
01882 uint32_t HAL_PWREx_GetTemperatureLevel (void)
01883 {
01884   uint32_t tempLevel, regValue;
01885 
01886   /* Read the temperature flags */
01887   regValue = READ_BIT (PWR->CR2, (PWR_CR2_TEMPH | PWR_CR2_TEMPL));
01888 
01889   /* Check if the temperature is below the threshold */
01890   if (regValue == PWR_CR2_TEMPL)
01891   {
01892     tempLevel = PWR_TEMP_BELOW_LOW_THRESHOLD;
01893   }
01894   /* Check if the temperature is above the threshold */
01895   else if (regValue == PWR_CR2_TEMPH)
01896   {
01897     tempLevel = PWR_TEMP_ABOVE_HIGH_THRESHOLD;
01898   }
01899   /* The temperature is between the thresholds */
01900   else
01901   {
01902     tempLevel = PWR_TEMP_BETWEEN_HIGH_LOW_THRESHOLD;
01903   }
01904 
01905   return tempLevel;
01906 }
01907 
01908 /**
01909   * @brief Indicate whether the Battery voltage level is between, above or below
01910   *        the thresholds.
01911   * @retval VBAT level.
01912   */
01913 uint32_t HAL_PWREx_GetVBATLevel (void)
01914 {
01915   uint32_t VBATLevel, regValue;
01916 
01917   /* Read the VBAT flags */
01918   regValue = READ_BIT (PWR->CR2, (PWR_CR2_VBATH | PWR_CR2_VBATL));
01919 
01920   /* Check if the VBAT is below the threshold */
01921   if (regValue == PWR_CR2_VBATL)
01922   {
01923     VBATLevel = PWR_VBAT_BELOW_LOW_THRESHOLD;
01924   }
01925   /* Check if the VBAT is above the threshold */
01926   else if (regValue == PWR_CR2_VBATH)
01927   {
01928     VBATLevel = PWR_VBAT_ABOVE_HIGH_THRESHOLD;
01929   }
01930   /* The VBAT is between the thresholds */
01931   else
01932   {
01933     VBATLevel = PWR_VBAT_BETWEEN_HIGH_LOW_THRESHOLD;
01934   }
01935 
01936   return VBATLevel;
01937 }
01938 
01939 #if defined (PWR_CSR1_MMCVDO)
01940 /**
01941   * @brief Get the VDDMMC voltage level.
01942   * @retval The VDDMMC voltage level.
01943   */
01944 PWREx_MMC_VoltageLevel HAL_PWREx_GetMMCVoltage (void)
01945 {
01946   PWREx_MMC_VoltageLevel mmc_voltage;
01947 
01948   /* Check voltage detector output on VDDMMC value */
01949   if ((PWR->CSR1 & PWR_CSR1_MMCVDO_Msk) == 0U)
01950   {
01951     mmc_voltage = PWR_MMC_VOLTAGE_BELOW_1V2;
01952   }
01953   else
01954   {
01955     mmc_voltage = PWR_MMC_VOLTAGE_EQUAL_ABOVE_1V2;
01956   }
01957 
01958   return mmc_voltage;
01959 }
01960 #endif /* defined (PWR_CSR1_MMCVDO) */
01961 
01962 /**
01963   * @brief  Configure the event mode and the voltage threshold detected by the
01964   *         Analog Voltage Detector (AVD).
01965   * @param  sConfigAVD : Pointer to an PWREx_AVDTypeDef structure that contains
01966   *                      the configuration information for the AVD.
01967   * @note   Refer to the electrical characteristics of your device datasheet for
01968   *         more details about the voltage threshold corresponding to each
01969   *         detection level.
01970   * @note   For dual core devices, please ensure to configure the EXTI lines for
01971   *         the different Cortex-Mx through PWR_Exported_Macro provided by this
01972   *         driver. All combination are allowed: wake up only Cortex-M7, wake up
01973   *         only Cortex-M4 and wake up Cortex-M7 and Cortex-M4.
01974   * @retval None.
01975   */
01976 void HAL_PWREx_ConfigAVD (PWREx_AVDTypeDef *sConfigAVD)
01977 {
01978   /* Check the parameters */
01979   assert_param (IS_PWR_AVD_LEVEL (sConfigAVD->AVDLevel));
01980   assert_param (IS_PWR_AVD_MODE (sConfigAVD->Mode));
01981 
01982   /* Set the ALS[18:17] bits according to AVDLevel value */
01983   MODIFY_REG (PWR->CR1, PWR_CR1_ALS, sConfigAVD->AVDLevel);
01984 
01985   /* Clear any previous config */
01986 #if !defined (DUAL_CORE)
01987   __HAL_PWR_AVD_EXTI_DISABLE_EVENT ();
01988   __HAL_PWR_AVD_EXTI_DISABLE_IT ();
01989 #endif /* !defined (DUAL_CORE) */
01990 
01991   __HAL_PWR_AVD_EXTI_DISABLE_RISING_EDGE ();
01992   __HAL_PWR_AVD_EXTI_DISABLE_FALLING_EDGE ();
01993 
01994 #if !defined (DUAL_CORE)
01995   /* Configure the interrupt mode */
01996   if ((sConfigAVD->Mode & AVD_MODE_IT) == AVD_MODE_IT)
01997   {
01998     __HAL_PWR_AVD_EXTI_ENABLE_IT ();
01999   }
02000 
02001   /* Configure the event mode */
02002   if ((sConfigAVD->Mode & AVD_MODE_EVT) == AVD_MODE_EVT)
02003   {
02004     __HAL_PWR_AVD_EXTI_ENABLE_EVENT ();
02005   }
02006 #endif /* !defined (DUAL_CORE) */
02007 
02008   /* Rising edge configuration */
02009   if ((sConfigAVD->Mode & AVD_RISING_EDGE) == AVD_RISING_EDGE)
02010   {
02011     __HAL_PWR_AVD_EXTI_ENABLE_RISING_EDGE ();
02012   }
02013 
02014   /* Falling edge configuration */
02015   if ((sConfigAVD->Mode & AVD_FALLING_EDGE) == AVD_FALLING_EDGE)
02016   {
02017     __HAL_PWR_AVD_EXTI_ENABLE_FALLING_EDGE ();
02018   }
02019 }
02020 
02021 /**
02022   * @brief Enable the Analog Voltage Detector (AVD).
02023   * @retval None.
02024   */
02025 void HAL_PWREx_EnableAVD (void)
02026 {
02027   /* Enable the Analog Voltage Detector */
02028   SET_BIT (PWR->CR1, PWR_CR1_AVDEN);
02029 }
02030 
02031 /**
02032   * @brief Disable the Analog Voltage Detector(AVD).
02033   * @retval None.
02034   */
02035 void HAL_PWREx_DisableAVD (void)
02036 {
02037   /* Disable the Analog Voltage Detector */
02038   CLEAR_BIT (PWR->CR1, PWR_CR1_AVDEN);
02039 }
02040 
02041 /**
02042   * @brief  This function handles the PWR PVD/AVD interrupt request.
02043   * @note   This API should be called under the PVD_AVD_IRQHandler().
02044   * @retval None
02045   */
02046 void HAL_PWREx_PVD_AVD_IRQHandler (void)
02047 {
02048   /* Check if the Programmable Voltage Detector is enabled (PVD) */
02049   if (READ_BIT (PWR->CR1, PWR_CR1_PVDEN) != 0U)
02050   {
02051 #if defined (DUAL_CORE)
02052     if (HAL_GetCurrentCPUID () == CM7_CPUID)
02053 #endif /* defined (DUAL_CORE) */
02054     {
02055       /* Check PWR D1/CD EXTI flag */
02056       if (__HAL_PWR_PVD_EXTI_GET_FLAG () != 0U)
02057       {
02058         /* PWR PVD interrupt user callback */
02059         HAL_PWR_PVDCallback ();
02060 
02061         /* Clear PWR EXTI D1/CD pending bit */
02062         __HAL_PWR_PVD_EXTI_CLEAR_FLAG ();
02063       }
02064     }
02065 #if defined (DUAL_CORE)
02066     else
02067     {
02068       /* Check PWR EXTI D2 flag */
02069       if (__HAL_PWR_PVD_EXTID2_GET_FLAG () != 0U)
02070       {
02071         /* PWR PVD interrupt user callback */
02072         HAL_PWR_PVDCallback ();
02073 
02074         /* Clear PWR EXTI D2 pending bit */
02075         __HAL_PWR_PVD_EXTID2_CLEAR_FLAG();
02076       }
02077     }
02078 #endif /* defined (DUAL_CORE) */
02079   }
02080 
02081   /* Check if the Analog Voltage Detector is enabled (AVD) */
02082   if (READ_BIT (PWR->CR1, PWR_CR1_AVDEN) != 0U)
02083   {
02084 #if defined (DUAL_CORE)
02085     if (HAL_GetCurrentCPUID () == CM7_CPUID)
02086 #endif /* defined (DUAL_CORE) */
02087     {
02088       /* Check PWR EXTI D1/CD flag */
02089       if (__HAL_PWR_AVD_EXTI_GET_FLAG () != 0U)
02090       {
02091         /* PWR AVD interrupt user callback */
02092         HAL_PWREx_AVDCallback ();
02093 
02094         /* Clear PWR EXTI D1/CD pending bit */
02095         __HAL_PWR_AVD_EXTI_CLEAR_FLAG ();
02096       }
02097     }
02098 #if defined (DUAL_CORE)
02099     else
02100     {
02101       /* Check PWR EXTI D2 flag */
02102       if (__HAL_PWR_AVD_EXTID2_GET_FLAG () != 0U)
02103       {
02104         /* PWR AVD interrupt user callback */
02105         HAL_PWREx_AVDCallback ();
02106 
02107         /* Clear PWR EXTI D2 pending bit */
02108         __HAL_PWR_AVD_EXTID2_CLEAR_FLAG ();
02109       }
02110     }
02111 #endif /* defined (DUAL_CORE) */
02112   }
02113 }
02114 
02115 /**
02116   * @brief PWR AVD interrupt callback.
02117   * @retval None.
02118   */
02119 __weak void HAL_PWREx_AVDCallback (void)
02120 {
02121   /* NOTE : This function should not be modified, when the callback is needed,
02122             the HAL_PWR_AVDCallback can be implemented in the user file
02123   */
02124 }
02125 /**
02126   * @}
02127   */
02128 
02129 /**
02130   * @}
02131   */
02132 
02133 #endif /* HAL_PWR_MODULE_ENABLED */
02134 
02135 /**
02136   * @}
02137   */
02138 
02139 /**
02140   * @}
02141   */
02142