STM32L443xx HAL User Manual
stm32l4xx_hal_rtc.c
Go to the documentation of this file.
00001 /**
00002   ******************************************************************************
00003   * @file    stm32l4xx_hal_rtc.c
00004   * @author  MCD Application Team
00005   * @brief   RTC HAL module driver.
00006   *          This file provides firmware functions to manage the following
00007   *          functionalities of the Real-Time Clock (RTC) peripheral:
00008   *           + Initialization/de-initialization functions
00009   *           + Calendar (Time and Date) configuration
00010   *           + Alarms (Alarm A and Alarm B) configuration
00011   *           + WakeUp Timer configuration
00012   *           + TimeStamp configuration
00013   *           + Tampers configuration
00014   *           + Backup Data Registers configuration
00015   *           + RTC Tamper and TimeStamp Pins Selection
00016   *           + Interrupts and flags management
00017   *
00018   ******************************************************************************
00019   * @attention
00020   *
00021   * Copyright (c) 2017 STMicroelectronics.
00022   * All rights reserved.
00023   *
00024   * This software is licensed under terms that can be found in the LICENSE file
00025   * in the root directory of this software component.
00026   * If no LICENSE file comes with this software, it is provided AS-IS.
00027   *
00028   ******************************************************************************
00029   @verbatim
00030  ===============================================================================
00031                           ##### RTC Operating Condition #####
00032  ===============================================================================
00033   [..] The real-time clock (RTC) and the RTC backup registers can be powered
00034        from the VBAT voltage when the main VDD supply is powered off.
00035        To retain the content of the RTC backup registers and supply the RTC
00036        when VDD is turned off, VBAT pin can be connected to an optional
00037        standby voltage supplied by a battery or by another source.
00038 
00039                    ##### Backup Domain Reset #####
00040  ===============================================================================
00041   [..] The backup domain reset sets all RTC registers and the RCC_BDCR register
00042        to their reset values.
00043        A backup domain reset is generated when one of the following events occurs:
00044     (#) Software reset, triggered by setting the BDRST bit in the
00045         RCC Backup domain control register (RCC_BDCR).
00046     (#) VDD or VBAT power on, if both supplies have previously been powered off.
00047     (#) Tamper detection event resets all data backup registers.
00048 
00049                    ##### Backup Domain Access #####
00050   ==================================================================
00051   [..] After reset, the backup domain (RTC registers and RTC backup data registers)
00052        is protected against possible unwanted write accesses.
00053   [..] To enable access to the RTC Domain and RTC registers, proceed as follows:
00054     (+) Enable the Power Controller (PWR) APB1 interface clock using the
00055         __HAL_RCC_PWR_CLK_ENABLE() function.
00056     (+) Enable access to RTC domain using the HAL_PWR_EnableBkUpAccess() function.
00057     (+) Select the RTC clock source using the __HAL_RCC_RTC_CONFIG() function.
00058     (+) Enable RTC Clock using the __HAL_RCC_RTC_ENABLE() function.
00059 
00060   [..] To enable access to the RTC Domain and RTC registers, proceed as follows:
00061     (#) Call the function HAL_RCCEx_PeriphCLKConfig with RCC_PERIPHCLK_RTC for
00062         PeriphClockSelection and select RTCClockSelection (LSE, LSI or HSEdiv32)
00063     (#) Enable RTC Clock using the __HAL_RCC_RTC_ENABLE() macro.
00064 
00065                   ##### How to use RTC Driver #####
00066  ===================================================================
00067   [..]
00068     (+) Enable the RTC domain access (see description in the section above).
00069     (+) Configure the RTC Prescaler (Asynchronous and Synchronous) and RTC hour
00070         format using the HAL_RTC_Init() function.
00071 
00072   *** Time and Date configuration ***
00073   ===================================
00074   [..]
00075     (+) To configure the RTC Calendar (Time and Date) use the HAL_RTC_SetTime()
00076         and HAL_RTC_SetDate() functions.
00077     (+) To read the RTC Calendar, use the HAL_RTC_GetTime() and HAL_RTC_GetDate() functions.
00078 
00079   *** Alarm configuration ***
00080   ===========================
00081   [..]
00082     (+) To configure the RTC Alarm use the HAL_RTC_SetAlarm() function.
00083             You can also configure the RTC Alarm with interrupt mode using the
00084             HAL_RTC_SetAlarm_IT() function.
00085     (+) To read the RTC Alarm, use the HAL_RTC_GetAlarm() function.
00086 
00087                   ##### RTC and low power modes #####
00088   ==================================================================
00089   [..] The MCU can be woken up from a low power mode by an RTC alternate
00090        function.
00091   [..] The RTC alternate functions are the RTC alarms (Alarm A and Alarm B),
00092        RTC wakeup, RTC tamper event detection and RTC time stamp event detection.
00093        These RTC alternate functions can wake up the system from the Stop and
00094        Standby low power modes.
00095   [..] The system can also wake up from low power modes without depending
00096        on an external interrupt (Auto-wakeup mode), by using the RTC alarm
00097        or the RTC wakeup events.
00098   [..] The RTC provides a programmable time base for waking up from the
00099        Stop or Standby mode at regular intervals.
00100        Wakeup from STOP and STANDBY modes is possible only when the RTC clock source
00101        is LSE or LSI.
00102 
00103   *** Callback registration ***
00104   =============================================
00105 
00106   [..]
00107   When The compilation define USE_HAL_RTC_REGISTER_CALLBACKS is set to 0 or
00108   not defined, the callback registration feature is not available and all callbacks
00109   are set to the corresponding weak functions. This is the recommended configuration
00110   in order to optimize memory/code consumption footprint/performances.
00111 
00112   [..]
00113   The compilation define  USE_RTC_REGISTER_CALLBACKS when set to 1
00114   allows the user to configure dynamically the driver callbacks.
00115   Use Function HAL_RTC_RegisterCallback() to register an interrupt callback.
00116 
00117   [..]
00118   Function HAL_RTC_RegisterCallback() allows to register following callbacks:
00119     (+) AlarmAEventCallback          : RTC Alarm A Event callback.
00120     (+) AlarmBEventCallback          : RTC Alarm B Event callback.
00121     (+) TimeStampEventCallback       : RTC TimeStamp Event callback.
00122     (+) WakeUpTimerEventCallback     : RTC WakeUpTimer Event callback.
00123 #if defined (STM32L4P5xx) || defined (STM32L4Q5xx)
00124     (+) SSRUEventCallback            : RTC SSRU Event callback.
00125 #endif
00126     (+) Tamper1EventCallback         : RTC Tamper 1 Event callback.
00127     (+) Tamper2EventCallback         : RTC Tamper 2 Event callback.
00128     (+) Tamper3EventCallback         : RTC Tamper 3 Event callback.
00129     (+) MspInitCallback              : RTC MspInit callback.
00130     (+) MspDeInitCallback            : RTC MspDeInit callback.
00131   This function takes as parameters the HAL peripheral handle, the Callback ID
00132   and a pointer to the user callback function.
00133 
00134   [..]
00135   Use function HAL_RTC_UnRegisterCallback() to reset a callback to the default
00136   weak function.
00137   HAL_RTC_UnRegisterCallback() takes as parameters the HAL peripheral handle,
00138   and the Callback ID.
00139   This function allows to reset following callbacks:
00140     (+) AlarmAEventCallback          : RTC Alarm A Event callback.
00141     (+) AlarmBEventCallback          : RTC Alarm B Event callback.
00142     (+) TimeStampEventCallback       : RTC TimeStamp Event callback.
00143     (+) WakeUpTimerEventCallback     : RTC WakeUpTimer Event callback.
00144 #if defined (STM32L4P5xx) || defined (STM32L4Q5xx)
00145     (+) SSRUEventCallback            : RTC SSRU Event callback.
00146 #endif
00147     (+) Tamper1EventCallback         : RTC Tamper 1 Event callback.
00148     (+) Tamper2EventCallback         : RTC Tamper 2 Event callback.
00149     (+) Tamper3EventCallback         : RTC Tamper 3 Event callback.
00150     (+) MspInitCallback              : RTC MspInit callback.
00151     (+) MspDeInitCallback            : RTC MspDeInit callback.
00152 
00153   [..]
00154   By default, after the HAL_RTC_Init() and when the state is HAL_RTC_STATE_RESET,
00155   all callbacks are set to the corresponding weak functions :
00156   examples AlarmAEventCallback(), TimeStampEventCallback().
00157   Exception done for MspInit and MspDeInit callbacks that are reset to the legacy weak function
00158   in the HAL_RTC_Init()/HAL_RTC_DeInit() only when these callbacks are null
00159   (not registered beforehand).
00160   If not, MspInit or MspDeInit are not null, HAL_RTC_Init()/HAL_RTC_DeInit()
00161   keep and use the user MspInit/MspDeInit callbacks (registered beforehand)
00162 
00163   [..]
00164   Callbacks can be registered/unregistered in HAL_RTC_STATE_READY state only.
00165   Exception done MspInit/MspDeInit that can be registered/unregistered
00166   in HAL_RTC_STATE_READY or HAL_RTC_STATE_RESET state,
00167   thus registered (user) MspInit/DeInit callbacks can be used during the Init/DeInit.
00168   In that case first register the MspInit/MspDeInit user callbacks
00169   using HAL_RTC_RegisterCallback() before calling HAL_RTC_DeInit()
00170   or HAL_RTC_Init() function.
00171 
00172   [..]
00173   When The compilation define USE_HAL_RTC_REGISTER_CALLBACKS is set to 0 or
00174   not defined, the callback registration feature is not available and all callbacks
00175   are set to the corresponding weak functions.
00176 
00177   @endverbatim
00178   ******************************************************************************
00179   */
00180 
00181 /* Includes ------------------------------------------------------------------*/
00182 #include "stm32l4xx_hal.h"
00183 
00184 /** @addtogroup STM32L4xx_HAL_Driver
00185   * @{
00186   */
00187 
00188 
00189 /** @addtogroup RTC
00190   * @brief RTC HAL module driver
00191   * @{
00192   */
00193 
00194 #ifdef HAL_RTC_MODULE_ENABLED
00195 
00196 /* Private typedef -----------------------------------------------------------*/
00197 /* Private define ------------------------------------------------------------*/
00198 /* Private macro -------------------------------------------------------------*/
00199 /* Private variables ---------------------------------------------------------*/
00200 /* Private function prototypes -----------------------------------------------*/
00201 /* Exported functions --------------------------------------------------------*/
00202 
00203 /** @addtogroup RTC_Exported_Functions
00204   * @{
00205   */
00206 
00207 /** @addtogroup RTC_Exported_Functions_Group1
00208  *  @brief    Initialization and Configuration functions
00209  *
00210 @verbatim
00211  ===============================================================================
00212               ##### Initialization and de-initialization functions #####
00213  ===============================================================================
00214    [..] This section provides functions allowing to initialize and configure the
00215          RTC Prescaler (Synchronous and Asynchronous), RTC Hour format, disable
00216          RTC registers Write protection, enter and exit the RTC initialization mode,
00217          RTC registers synchronization check and reference clock detection enable.
00218          (#) The RTC Prescaler is programmed to generate the RTC 1Hz time base.
00219              It is split into 2 programmable prescalers to minimize power consumption.
00220              (++) A 7-bit asynchronous prescaler and a 15-bit synchronous prescaler.
00221              (++) When both prescalers are used, it is recommended to configure the
00222                  asynchronous prescaler to a high value to minimize power consumption.
00223          (#) All RTC registers are Write protected. Writing to the RTC registers
00224              is enabled by writing a key into the Write Protection register, RTC_WPR.
00225          (#) To configure the RTC Calendar, user application should enter
00226              initialization mode. In this mode, the calendar counter is stopped
00227              and its value can be updated. When the initialization sequence is
00228              complete, the calendar restarts counting after 4 RTCCLK cycles.
00229          (#) To read the calendar through the shadow registers after Calendar
00230              initialization, calendar update or after wakeup from low power modes
00231              the software must first clear the RSF flag. The software must then
00232              wait until it is set again before reading the calendar, which means
00233              that the calendar registers have been correctly copied into the
00234              RTC_TR and RTC_DR shadow registers.The HAL_RTC_WaitForSynchro() function
00235              implements the above software sequence (RSF clear and RSF check).
00236 
00237 @endverbatim
00238   * @{
00239   */
00240 
00241 /**
00242   * @brief  Initialize the RTC peripheral
00243   * @param  hrtc RTC handle
00244   * @retval HAL status
00245   */
00246 HAL_StatusTypeDef HAL_RTC_Init(RTC_HandleTypeDef *hrtc)
00247 {
00248   HAL_StatusTypeDef status = HAL_ERROR;
00249 
00250   /* Check the RTC peripheral state */
00251   if (hrtc != NULL)
00252   {
00253     /* Check the parameters */
00254     assert_param(IS_RTC_ALL_INSTANCE(hrtc->Instance));
00255     assert_param(IS_RTC_HOUR_FORMAT(hrtc->Init.HourFormat));
00256     assert_param(IS_RTC_ASYNCH_PREDIV(hrtc->Init.AsynchPrediv));
00257     assert_param(IS_RTC_SYNCH_PREDIV(hrtc->Init.SynchPrediv));
00258     assert_param(IS_RTC_OUTPUT(hrtc->Init.OutPut));
00259     assert_param(IS_RTC_OUTPUT_REMAP(hrtc->Init.OutPutRemap));
00260     assert_param(IS_RTC_OUTPUT_POL(hrtc->Init.OutPutPolarity));
00261     assert_param(IS_RTC_OUTPUT_TYPE(hrtc->Init.OutPutType));
00262 #if defined(STM32L412xx) || defined(STM32L422xx) || defined (STM32L4P5xx) || defined (STM32L4Q5xx)
00263     assert_param(IS_RTC_OUTPUT_PULLUP(hrtc->Init.OutPutPullUp));
00264 #endif
00265 
00266 #if defined (STM32L4P5xx) || defined (STM32L4Q5xx)
00267     assert_param(IS_RTC_BINARY_MODE(hrtc->Init.BinMode));
00268     assert_param(IS_RTC_BINARY_MIX_BCDU(hrtc->Init.BinMixBcdU));
00269 #endif
00270 
00271 #if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
00272     if (hrtc->State == HAL_RTC_STATE_RESET)
00273     {
00274       /* Allocate lock resource and initialize it */
00275       hrtc->Lock = HAL_UNLOCKED;
00276       hrtc->AlarmAEventCallback          =  HAL_RTC_AlarmAEventCallback;             /* Legacy weak AlarmAEventCallback      */
00277       hrtc->AlarmBEventCallback          =  HAL_RTCEx_AlarmBEventCallback;           /* Legacy weak AlarmBEventCallback      */
00278       hrtc->TimeStampEventCallback       =  HAL_RTCEx_TimeStampEventCallback;        /* Legacy weak TimeStampEventCallback   */
00279       hrtc->WakeUpTimerEventCallback     =  HAL_RTCEx_WakeUpTimerEventCallback;      /* Legacy weak WakeUpTimerEventCallback */
00280 #if defined (STM32L4P5xx) || defined (STM32L4Q5xx)
00281       hrtc->SSRUEventCallback            =  HAL_RTCEx_SSRUEventCallback;             /* Legacy weak SSRUEventCallback */
00282 #endif
00283 
00284 #if defined(RTC_TAMPER1_SUPPORT)
00285       hrtc->Tamper1EventCallback         =  HAL_RTCEx_Tamper1EventCallback;          /* Legacy weak Tamper1EventCallback     */
00286 #endif /* RTC_TAMPER1_SUPPORT */
00287       hrtc->Tamper2EventCallback         =  HAL_RTCEx_Tamper2EventCallback;          /* Legacy weak Tamper2EventCallback     */
00288 #if defined(RTC_TAMPER3_SUPPORT)
00289       hrtc->Tamper3EventCallback         =  HAL_RTCEx_Tamper3EventCallback;          /* Legacy weak Tamper3EventCallback     */
00290 #endif /* RTC_TAMPER3_SUPPORT */
00291 
00292       if (hrtc->MspInitCallback == NULL)
00293       {
00294         hrtc->MspInitCallback = HAL_RTC_MspInit;
00295       }
00296       /* Init the low level hardware */
00297       hrtc->MspInitCallback(hrtc);
00298 
00299       if (hrtc->MspDeInitCallback == NULL)
00300       {
00301         hrtc->MspDeInitCallback = HAL_RTC_MspDeInit;
00302       }
00303     }
00304 #else /* #if (USE_HAL_RTC_REGISTER_CALLBACKS == 1) */
00305     if (hrtc->State == HAL_RTC_STATE_RESET)
00306     {
00307       /* Allocate lock resource and initialize it */
00308       hrtc->Lock = HAL_UNLOCKED;
00309 
00310       /* Initialize RTC MSP */
00311       HAL_RTC_MspInit(hrtc);
00312     }
00313 #endif /* #if (USE_HAL_RTC_REGISTER_CALLBACKS == 1) */
00314 
00315 #if defined(STM32L412xx) || defined(STM32L422xx) || defined (STM32L4P5xx) || defined (STM32L4Q5xx)
00316     /* Process TAMP ip offset from RTC one */
00317     hrtc->TampOffset = (TAMP_BASE - RTC_BASE);
00318 #endif
00319     /* Set RTC state */
00320     hrtc->State = HAL_RTC_STATE_BUSY;
00321 
00322     /* Disable the write protection for RTC registers */
00323     __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
00324 
00325     /* Enter Initialization mode */
00326     status = RTC_EnterInitMode(hrtc);
00327 
00328     if (status == HAL_OK)
00329     {
00330 #if defined(STM32L412xx) || defined(STM32L422xx) || defined (STM32L4P5xx) || defined (STM32L4Q5xx)
00331       /* Clear RTC_CR FMT, OSEL, POL and TAMPOE Bits */
00332       hrtc->Instance->CR &= ~(RTC_CR_FMT | RTC_CR_POL | RTC_CR_OSEL | RTC_CR_TAMPOE);
00333 #else
00334       /* Clear RTC_CR FMT, OSEL and POL Bits */
00335       hrtc->Instance->CR &= ~(RTC_CR_FMT | RTC_CR_OSEL | RTC_CR_POL);
00336 #endif
00337       /* Set RTC_CR register */
00338       hrtc->Instance->CR |= (hrtc->Init.HourFormat | hrtc->Init.OutPut | hrtc->Init.OutPutPolarity);
00339 
00340       /* Configure the RTC PRER */
00341       hrtc->Instance->PRER = (hrtc->Init.SynchPrediv);
00342       hrtc->Instance->PRER |= (hrtc->Init.AsynchPrediv << RTC_PRER_PREDIV_A_Pos);
00343 
00344 #if defined (STM32L4P5xx) || defined (STM32L4Q5xx)
00345       /* Configure the Binary mode */
00346       MODIFY_REG(RTC->ICSR, RTC_ICSR_BIN | RTC_ICSR_BCDU, hrtc->Init.BinMode | hrtc->Init.BinMixBcdU);
00347 #endif
00348 
00349       /* Exit Initialization mode */
00350       status = RTC_ExitInitMode(hrtc);
00351 
00352       if (status == HAL_OK)
00353       {
00354 #if defined(STM32L412xx) || defined(STM32L422xx) || defined (STM32L4P5xx) || defined (STM32L4Q5xx)
00355         hrtc->Instance->CR &= ~(RTC_CR_TAMPALRM_PU | RTC_CR_TAMPALRM_TYPE | RTC_CR_OUT2EN);
00356         hrtc->Instance->CR |= (hrtc->Init.OutPutPullUp | hrtc->Init.OutPutType | hrtc->Init.OutPutRemap);
00357 #else
00358         hrtc->Instance->OR &= ~(RTC_OR_ALARMOUTTYPE | RTC_OR_OUT_RMP);
00359         hrtc->Instance->OR |= (hrtc->Init.OutPutType | hrtc->Init.OutPutRemap);
00360 #endif
00361 
00362         /* Enable the write protection for RTC registers */
00363         __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
00364 
00365         hrtc->State = HAL_RTC_STATE_READY;
00366       }
00367     }
00368   }
00369 
00370   return status;
00371 }
00372 
00373 /**
00374   * @brief  DeInitialize the RTC peripheral.
00375   * @note   This function does not reset the RTC Backup Data registers.
00376   * @param  hrtc RTC handle
00377   * @retval HAL status
00378   */
00379 HAL_StatusTypeDef HAL_RTC_DeInit(RTC_HandleTypeDef *hrtc)
00380 {
00381   HAL_StatusTypeDef status = HAL_ERROR;
00382 
00383   /* Check the RTC peripheral state */
00384   if (hrtc != NULL)
00385   {
00386     /* Check the parameters */
00387     assert_param(IS_RTC_ALL_INSTANCE(hrtc->Instance));
00388 
00389     /* Set RTC state */
00390     hrtc->State = HAL_RTC_STATE_BUSY;
00391 
00392     /* Disable the write protection for RTC registers */
00393     __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
00394 
00395     /* Enter Initialization mode */
00396     status = RTC_EnterInitMode(hrtc);
00397 
00398     if (status == HAL_OK)
00399     {
00400       /* Reset all RTC CR register bits */
00401       hrtc->Instance->TR = 0x00000000U;
00402       hrtc->Instance->DR = ((uint32_t)(RTC_DR_WDU_0 | RTC_DR_MU_0 | RTC_DR_DU_0));
00403       hrtc->Instance->CR &= 0x00000000U;
00404 
00405       hrtc->Instance->WUTR = RTC_WUTR_WUT;
00406       hrtc->Instance->PRER = ((uint32_t)(RTC_PRER_PREDIV_A | 0x000000FFU));
00407       hrtc->Instance->ALRMAR = 0x00000000U;
00408       hrtc->Instance->ALRMBR = 0x00000000U;
00409       hrtc->Instance->SHIFTR = 0x00000000U;
00410       hrtc->Instance->CALR = 0x00000000U;
00411       hrtc->Instance->ALRMASSR = 0x00000000U;
00412       hrtc->Instance->ALRMBSSR = 0x00000000U;
00413 
00414       /* Exit initialization mode */
00415       status = RTC_ExitInitMode(hrtc);
00416 
00417 
00418       if (status == HAL_OK)
00419       {
00420 #if defined(STM32L412xx) || defined(STM32L422xx) || defined (STM32L4P5xx) || defined (STM32L4Q5xx)
00421         /* Reset TAMP registers */
00422         ((TAMP_TypeDef *)((uint32_t)hrtc->Instance + hrtc->TampOffset))->CR1 = 0xFFFF0000U;
00423         ((TAMP_TypeDef *)((uint32_t)hrtc->Instance + hrtc->TampOffset))->CR2 = 0x00000000U;
00424 #else
00425         /* Reset Tamper configuration register */
00426         hrtc->Instance->TAMPCR = 0x00000000U;
00427 
00428         /* Reset Option register */
00429         hrtc->Instance->OR = 0x00000000U;
00430 #endif
00431 
00432         /* Enable the write protection for RTC registers */
00433         __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
00434 
00435 #if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
00436         if (hrtc->MspDeInitCallback == NULL)
00437         {
00438           hrtc->MspDeInitCallback = HAL_RTC_MspDeInit;
00439         }
00440 
00441         /* DeInit the low level hardware: CLOCK, NVIC.*/
00442         hrtc->MspDeInitCallback(hrtc);
00443 #else
00444         /* De-Initialize RTC MSP */
00445         HAL_RTC_MspDeInit(hrtc);
00446 #endif /* (USE_HAL_RTC_REGISTER_CALLBACKS) */
00447 
00448         hrtc->State = HAL_RTC_STATE_RESET;
00449 
00450         /* Release Lock */
00451         __HAL_UNLOCK(hrtc);
00452       }
00453     }
00454   }
00455 
00456   return status;
00457 }
00458 
00459 #if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
00460 /**
00461   * @brief  Register a User RTC Callback
00462   *         To be used instead of the weak predefined callback
00463   * @param  hrtc RTC handle
00464   * @param  CallbackID ID of the callback to be registered
00465   *         This parameter can be one of the following values:
00466   *          @arg @ref HAL_RTC_ALARM_A_EVENT_CB_ID          Alarm A Event Callback ID
00467   *          @arg @ref HAL_RTC_ALARM_B_EVENT_CB_ID          Alarm B Event Callback ID
00468   *          @arg @ref HAL_RTC_TIMESTAMP_EVENT_CB_ID        TimeStamp Event Callback ID
00469   *          @arg @ref HAL_RTC_WAKEUPTIMER_EVENT_CB_ID      WakeUp Timer Event Callback ID
00470   *          @arg @ref HAL_RTC_TAMPER1_EVENT_CB_ID          Tamper 1 Callback ID
00471   *          @arg @ref HAL_RTC_TAMPER2_EVENT_CB_ID          Tamper 2 Callback ID
00472   *          @arg @ref HAL_RTC_TAMPER3_EVENT_CB_ID          Tamper 3 Callback ID
00473   *          @arg @ref HAL_RTC_MSPINIT_CB_ID                Msp Init callback ID
00474   *          @arg @ref HAL_RTC_MSPDEINIT_CB_ID              Msp DeInit callback ID
00475   * @param  pCallback pointer to the Callback function
00476   * @retval HAL status
00477   */
00478 HAL_StatusTypeDef HAL_RTC_RegisterCallback(RTC_HandleTypeDef *hrtc, HAL_RTC_CallbackIDTypeDef CallbackID, pRTC_CallbackTypeDef pCallback)
00479 {
00480   HAL_StatusTypeDef status = HAL_OK;
00481 
00482   if (pCallback == NULL)
00483   {
00484     return HAL_ERROR;
00485   }
00486 
00487   /* Process locked */
00488   __HAL_LOCK(hrtc);
00489 
00490   if (HAL_RTC_STATE_READY == hrtc->State)
00491   {
00492     switch (CallbackID)
00493     {
00494       case HAL_RTC_ALARM_A_EVENT_CB_ID :
00495         hrtc->AlarmAEventCallback = pCallback;
00496         break;
00497 
00498       case HAL_RTC_ALARM_B_EVENT_CB_ID :
00499         hrtc->AlarmBEventCallback = pCallback;
00500         break;
00501 
00502       case HAL_RTC_TIMESTAMP_EVENT_CB_ID :
00503         hrtc->TimeStampEventCallback = pCallback;
00504         break;
00505 
00506       case HAL_RTC_WAKEUPTIMER_EVENT_CB_ID :
00507         hrtc->WakeUpTimerEventCallback = pCallback;
00508         break;
00509 
00510 #if defined (STM32L4P5xx) || defined (STM32L4Q5xx)
00511       case HAL_RTC_SSRU_EVENT_CB_ID :
00512         hrtc->SSRUEventCallback = pCallback;
00513         break;
00514 #endif
00515 
00516 #if defined(RTC_TAMPER1_SUPPORT)
00517       case HAL_RTC_TAMPER1_EVENT_CB_ID :
00518         hrtc->Tamper1EventCallback = pCallback;
00519         break;
00520 #endif /* RTC_TAMPER1_SUPPORT */
00521 
00522       case HAL_RTC_TAMPER2_EVENT_CB_ID :
00523         hrtc->Tamper2EventCallback = pCallback;
00524         break;
00525 
00526 #if defined(RTC_TAMPER3_SUPPORT)
00527       case HAL_RTC_TAMPER3_EVENT_CB_ID :
00528         hrtc->Tamper3EventCallback = pCallback;
00529         break;
00530 #endif /* RTC_TAMPER3_SUPPORT */
00531 
00532       case HAL_RTC_MSPINIT_CB_ID :
00533         hrtc->MspInitCallback = pCallback;
00534         break;
00535 
00536       case HAL_RTC_MSPDEINIT_CB_ID :
00537         hrtc->MspDeInitCallback = pCallback;
00538         break;
00539 
00540       default :
00541         /* Return error status */
00542         status =  HAL_ERROR;
00543         break;
00544     }
00545   }
00546   else if (HAL_RTC_STATE_RESET == hrtc->State)
00547   {
00548     switch (CallbackID)
00549     {
00550       case HAL_RTC_MSPINIT_CB_ID :
00551         hrtc->MspInitCallback = pCallback;
00552         break;
00553 
00554       case HAL_RTC_MSPDEINIT_CB_ID :
00555         hrtc->MspDeInitCallback = pCallback;
00556         break;
00557 
00558       default :
00559         /* Return error status */
00560         status =  HAL_ERROR;
00561         break;
00562     }
00563   }
00564   else
00565   {
00566     /* Return error status */
00567     status =  HAL_ERROR;
00568   }
00569 
00570   /* Release Lock */
00571   __HAL_UNLOCK(hrtc);
00572 
00573   return status;
00574 }
00575 
00576 /**
00577   * @brief  Unregister an RTC Callback
00578   *         RTC callback is redirected to the weak predefined callback
00579   * @param  hrtc RTC handle
00580   * @param  CallbackID ID of the callback to be unregistered
00581   *         This parameter can be one of the following values:
00582   *          @arg @ref HAL_RTC_ALARM_A_EVENT_CB_ID          Alarm A Event Callback ID
00583   *          @arg @ref HAL_RTC_ALARM_B_EVENT_CB_ID          Alarm B Event Callback ID
00584   *          @arg @ref HAL_RTC_TIMESTAMP_EVENT_CB_ID        TimeStamp Event Callback ID
00585 #if defined (STM32L4P5xx) || defined (STM32L4Q5xx)
00586   *          @arg @ref HAL_RTC_SSRU_EVENT_CB_ID             SSRU Callback ID
00587 #endif
00588   *          @arg @ref HAL_RTC_WAKEUPTIMER_EVENT_CB_ID      WakeUp Timer Event Callback ID
00589   *          @arg @ref HAL_RTC_TAMPER1_EVENT_CB_ID          Tamper 1 Callback ID
00590   *          @arg @ref HAL_RTC_TAMPER2_EVENT_CB_ID          Tamper 2 Callback ID
00591   *          @arg @ref HAL_RTC_TAMPER3_EVENT_CB_ID          Tamper 3 Callback ID
00592   *          @arg @ref HAL_RTC_MSPINIT_CB_ID Msp Init callback ID
00593   *          @arg @ref HAL_RTC_MSPDEINIT_CB_ID Msp DeInit callback ID
00594   * @retval HAL status
00595   */
00596 HAL_StatusTypeDef HAL_RTC_UnRegisterCallback(RTC_HandleTypeDef *hrtc, HAL_RTC_CallbackIDTypeDef CallbackID)
00597 {
00598   HAL_StatusTypeDef status = HAL_OK;
00599 
00600   /* Process locked */
00601   __HAL_LOCK(hrtc);
00602 
00603   if (HAL_RTC_STATE_READY == hrtc->State)
00604   {
00605     switch (CallbackID)
00606     {
00607       case HAL_RTC_ALARM_A_EVENT_CB_ID :
00608         hrtc->AlarmAEventCallback = HAL_RTC_AlarmAEventCallback;         /* Legacy weak AlarmAEventCallback    */
00609         break;
00610 
00611       case HAL_RTC_ALARM_B_EVENT_CB_ID :
00612         hrtc->AlarmBEventCallback = HAL_RTCEx_AlarmBEventCallback;          /* Legacy weak AlarmBEventCallback */
00613         break;
00614 
00615       case HAL_RTC_TIMESTAMP_EVENT_CB_ID :
00616         hrtc->TimeStampEventCallback = HAL_RTCEx_TimeStampEventCallback;    /* Legacy weak TimeStampEventCallback    */
00617         break;
00618 
00619       case HAL_RTC_WAKEUPTIMER_EVENT_CB_ID :
00620         hrtc->WakeUpTimerEventCallback = HAL_RTCEx_WakeUpTimerEventCallback; /* Legacy weak WakeUpTimerEventCallback */
00621         break;
00622 
00623 #if defined (STM32L4P5xx) || defined (STM32L4Q5xx)
00624       case HAL_RTC_SSRU_EVENT_CB_ID :
00625         hrtc->SSRUEventCallback = HAL_RTCEx_SSRUEventCallback;               /* Legacy weak SSRUEventCallback */
00626         break;
00627 #endif
00628 
00629 #if defined(RTC_TAMPER1_SUPPORT)
00630       case HAL_RTC_TAMPER1_EVENT_CB_ID :
00631         hrtc->Tamper1EventCallback = HAL_RTCEx_Tamper1EventCallback;         /* Legacy weak Tamper1EventCallback   */
00632         break;
00633 #endif /* RTC_TAMPER1_SUPPORT */
00634 
00635       case HAL_RTC_TAMPER2_EVENT_CB_ID :
00636         hrtc->Tamper2EventCallback = HAL_RTCEx_Tamper2EventCallback;         /* Legacy weak Tamper2EventCallback         */
00637         break;
00638 
00639 #if defined(RTC_TAMPER3_SUPPORT)
00640       case HAL_RTC_TAMPER3_EVENT_CB_ID :
00641         hrtc->Tamper3EventCallback = HAL_RTCEx_Tamper3EventCallback;         /* Legacy weak Tamper3EventCallback         */
00642         break;
00643 #endif /* RTC_TAMPER3_SUPPORT */
00644 
00645       case HAL_RTC_MSPINIT_CB_ID :
00646         hrtc->MspInitCallback = HAL_RTC_MspInit;
00647         break;
00648 
00649       case HAL_RTC_MSPDEINIT_CB_ID :
00650         hrtc->MspDeInitCallback = HAL_RTC_MspDeInit;
00651         break;
00652 
00653       default :
00654         /* Return error status */
00655         status =  HAL_ERROR;
00656         break;
00657     }
00658   }
00659   else if (HAL_RTC_STATE_RESET == hrtc->State)
00660   {
00661     switch (CallbackID)
00662     {
00663       case HAL_RTC_MSPINIT_CB_ID :
00664         hrtc->MspInitCallback = HAL_RTC_MspInit;
00665         break;
00666 
00667       case HAL_RTC_MSPDEINIT_CB_ID :
00668         hrtc->MspDeInitCallback = HAL_RTC_MspDeInit;
00669         break;
00670 
00671       default :
00672         /* Return error status */
00673         status =  HAL_ERROR;
00674         break;
00675     }
00676   }
00677   else
00678   {
00679     /* Return error status */
00680     status =  HAL_ERROR;
00681   }
00682 
00683   /* Release Lock */
00684   __HAL_UNLOCK(hrtc);
00685 
00686   return status;
00687 }
00688 #endif /* USE_HAL_RTC_REGISTER_CALLBACKS */
00689 
00690 /**
00691   * @brief  Initialize the RTC MSP.
00692   * @param  hrtc RTC handle
00693   * @retval None
00694   */
00695 __weak void HAL_RTC_MspInit(RTC_HandleTypeDef *hrtc)
00696 {
00697   /* Prevent unused argument(s) compilation warning */
00698   UNUSED(hrtc);
00699 
00700   /* NOTE : This function should not be modified, when the callback is needed,
00701             the HAL_RTC_MspInit could be implemented in the user file
00702    */
00703 }
00704 
00705 /**
00706   * @brief  DeInitialize the RTC MSP.
00707   * @param  hrtc RTC handle
00708   * @retval None
00709   */
00710 __weak void HAL_RTC_MspDeInit(RTC_HandleTypeDef *hrtc)
00711 {
00712   /* Prevent unused argument(s) compilation warning */
00713   UNUSED(hrtc);
00714 
00715   /* NOTE : This function should not be modified, when the callback is needed,
00716             the HAL_RTC_MspDeInit could be implemented in the user file
00717    */
00718 }
00719 
00720 /**
00721   * @}
00722   */
00723 
00724 /** @addtogroup RTC_Exported_Functions_Group2
00725  *  @brief   RTC Time and Date functions
00726  *
00727 @verbatim
00728  ===============================================================================
00729                  ##### RTC Time and Date functions #####
00730  ===============================================================================
00731 
00732  [..] This section provides functions allowing to configure Time and Date features
00733 
00734 @endverbatim
00735   * @{
00736   */
00737 
00738 #if defined (STM32L4P5xx) || defined (STM32L4Q5xx)
00739 /**
00740   * @brief  Set RTC current time.
00741   * @param  hrtc RTC handle
00742   * @param  sTime Pointer to Time structure
00743   *          if Binary mode is RTC_BINARY_ONLY, this parameter is not used and RTC_SSR will be automatically reset to 0xFFFFFFFF
00744              else sTime->SubSeconds is not used and RTC_SSR will be automatically reset to the A 7-bit async prescaler (RTC_PRER_PREDIV_A)
00745   * @param  Format Format of sTime->Hours, sTime->Minutes and sTime->Seconds.
00746   *          if Binary mode is RTC_BINARY_ONLY, this parameter is not used
00747   *          else this parameter can be one of the following values
00748   *             @arg RTC_FORMAT_BIN: Binary format
00749   *             @arg RTC_FORMAT_BCD: BCD format
00750   * @retval HAL status
00751   */
00752 HAL_StatusTypeDef HAL_RTC_SetTime(RTC_HandleTypeDef *hrtc, RTC_TimeTypeDef *sTime, uint32_t Format)
00753 {
00754   uint32_t tmpreg;
00755   HAL_StatusTypeDef status;
00756 
00757 #ifdef USE_FULL_ASSERT
00758   /* Check the parameters depending of the Binary mode with 32-bit free-running counter configuration. */
00759   if (READ_BIT(RTC->ICSR, RTC_ICSR_BIN) == RTC_BINARY_NONE)
00760   {
00761     /* Check the parameters */
00762     assert_param(IS_RTC_FORMAT(Format));
00763     assert_param(IS_RTC_DAYLIGHT_SAVING(sTime->DayLightSaving));
00764     assert_param(IS_RTC_STORE_OPERATION(sTime->StoreOperation));
00765   }
00766 #endif
00767 
00768   /* Process Locked */
00769   __HAL_LOCK(hrtc);
00770 
00771   hrtc->State = HAL_RTC_STATE_BUSY;
00772 
00773   /* Disable the write protection for RTC registers */
00774   __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
00775 
00776   /* Enter Initialization mode */
00777   status = RTC_EnterInitMode(hrtc);
00778   if (status == HAL_OK)
00779   {
00780     /* Check Binary mode ((32-bit free-running counter) */
00781     if (READ_BIT(RTC->ICSR, RTC_ICSR_BIN) != RTC_BINARY_ONLY)
00782     {
00783       if (Format == RTC_FORMAT_BIN)
00784       {
00785         if (READ_BIT(RTC->CR, RTC_CR_FMT) != 0U)
00786         {
00787           assert_param(IS_RTC_HOUR12(sTime->Hours));
00788           assert_param(IS_RTC_HOURFORMAT12(sTime->TimeFormat));
00789         }
00790         else
00791         {
00792           sTime->TimeFormat = 0x00U;
00793           assert_param(IS_RTC_HOUR24(sTime->Hours));
00794         }
00795         assert_param(IS_RTC_MINUTES(sTime->Minutes));
00796         assert_param(IS_RTC_SECONDS(sTime->Seconds));
00797 
00798         tmpreg = (uint32_t)(((uint32_t)RTC_ByteToBcd2(sTime->Hours) << RTC_TR_HU_Pos) | \
00799                             ((uint32_t)RTC_ByteToBcd2(sTime->Minutes) << RTC_TR_MNU_Pos) | \
00800                             ((uint32_t)RTC_ByteToBcd2(sTime->Seconds) << RTC_TR_SU_Pos) | \
00801                             (((uint32_t)sTime->TimeFormat) << RTC_TR_PM_Pos));
00802 
00803       }
00804       else
00805       {
00806         if (READ_BIT(RTC->CR, RTC_CR_FMT) != 0U)
00807         {
00808           assert_param(IS_RTC_HOUR12(RTC_Bcd2ToByte(sTime->Hours)));
00809           assert_param(IS_RTC_HOURFORMAT12(sTime->TimeFormat));
00810         }
00811         else
00812         {
00813           sTime->TimeFormat = 0x00U;
00814           assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(sTime->Hours)));
00815         }
00816         assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(sTime->Minutes)));
00817         assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(sTime->Seconds)));
00818         tmpreg = (((uint32_t)(sTime->Hours) << RTC_TR_HU_Pos) | \
00819                   ((uint32_t)(sTime->Minutes) << RTC_TR_MNU_Pos) | \
00820                   ((uint32_t)(sTime->Seconds) << RTC_TR_SU_Pos) | \
00821                   ((uint32_t)(sTime->TimeFormat) << RTC_TR_PM_Pos));
00822       }
00823 
00824       /* Set the RTC_TR register */
00825       WRITE_REG(RTC->TR, (tmpreg & RTC_TR_RESERVED_MASK));
00826 
00827       /* This interface is deprecated. To manage Daylight Saving Time, please use HAL_RTC_DST_xxx functions */
00828       CLEAR_BIT(RTC->CR, RTC_CR_BKP);
00829 
00830       /* This interface is deprecated. To manage Daylight Saving Time, please use HAL_RTC_DST_xxx functions */
00831       SET_BIT(RTC->CR, (sTime->DayLightSaving | sTime->StoreOperation));
00832     }
00833   }
00834 
00835   /* Exit Initialization mode */
00836   status = RTC_ExitInitMode(hrtc);
00837 
00838 
00839   /* Enable the write protection for RTC registers */
00840   __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
00841 
00842   if (status == HAL_OK)
00843   {
00844     hrtc->State = HAL_RTC_STATE_READY;
00845   }
00846 
00847   /* Process Unlocked */
00848   __HAL_UNLOCK(hrtc);
00849 
00850   return status;
00851 }
00852 
00853 /**
00854   * @brief  Get RTC current time.
00855   * @note  You can use SubSeconds and SecondFraction (sTime structure fields returned) to convert SubSeconds
00856   *        value in second fraction ratio with time unit following generic formula:
00857   *        Second fraction ratio * time_unit= [(SecondFraction-SubSeconds)/(SecondFraction+1)] * time_unit
00858   *        This conversion can be performed only if no shift operation is pending (ie. SHFP=0) when PREDIV_S >= SS
00859   * @note  You must call HAL_RTC_GetDate() after HAL_RTC_GetTime() to unlock the values
00860   *        in the higher-order calendar shadow registers to ensure consistency between the time and date values.
00861   *        Reading RTC current time locks the values in calendar shadow registers until Current date is read
00862   *        to ensure consistency between the time and date values.
00863   * @param  hrtc RTC handle
00864   * @param  sTime
00865   *          if Binary mode is RTC_BINARY_ONLY, sTime->SubSeconds only is updated
00866   *          else
00867   *             Pointer to Time structure with Hours, Minutes and Seconds fields returned
00868 *               with input format (BIN or BCD), also SubSeconds field returning the
00869 *               RTC_SSR register content and SecondFraction field the Synchronous pre-scaler
00870 *               factor to be used for second fraction ratio computation.
00871   * @param  Format Format of sTime->Hours, sTime->Minutes and sTime->Seconds.
00872   *          if Binary mode is RTC_BINARY_ONLY, this parameter is not used
00873   *          else this parameter can be one of the following values:
00874   *            @arg RTC_FORMAT_BIN: Binary format
00875   *            @arg RTC_FORMAT_BCD: BCD format
00876   * @retval HAL status
00877   */
00878 HAL_StatusTypeDef HAL_RTC_GetTime(RTC_HandleTypeDef *hrtc, RTC_TimeTypeDef *sTime, uint32_t Format)
00879 {
00880   uint32_t tmpreg;
00881 
00882   UNUSED(hrtc);
00883   /* Get subseconds structure field from the corresponding register*/
00884   sTime->SubSeconds = READ_REG(RTC->SSR);
00885 
00886   if (READ_BIT(RTC->ICSR, RTC_ICSR_BIN) != RTC_BINARY_ONLY)
00887   {
00888     /* Check the parameters */
00889     assert_param(IS_RTC_FORMAT(Format));
00890 
00891     /* Get SecondFraction structure field from the corresponding register field*/
00892     sTime->SecondFraction = (uint32_t)(READ_REG(RTC->PRER) & RTC_PRER_PREDIV_S);
00893 
00894     /* Get the TR register */
00895     tmpreg = (uint32_t)(READ_REG(RTC->TR) & RTC_TR_RESERVED_MASK);
00896 
00897     /* Fill the structure fields with the read parameters */
00898     sTime->Hours = (uint8_t)((tmpreg & (RTC_TR_HT | RTC_TR_HU)) >> RTC_TR_HU_Pos);
00899     sTime->Minutes = (uint8_t)((tmpreg & (RTC_TR_MNT | RTC_TR_MNU)) >> RTC_TR_MNU_Pos);
00900     sTime->Seconds = (uint8_t)((tmpreg & (RTC_TR_ST | RTC_TR_SU)) >> RTC_TR_SU_Pos);
00901     sTime->TimeFormat = (uint8_t)((tmpreg & (RTC_TR_PM)) >> RTC_TR_PM_Pos);
00902 
00903     /* Check the input parameters format */
00904     if (Format == RTC_FORMAT_BIN)
00905     {
00906       /* Convert the time structure parameters to Binary format */
00907       sTime->Hours = (uint8_t)RTC_Bcd2ToByte(sTime->Hours);
00908       sTime->Minutes = (uint8_t)RTC_Bcd2ToByte(sTime->Minutes);
00909       sTime->Seconds = (uint8_t)RTC_Bcd2ToByte(sTime->Seconds);
00910     }
00911   }
00912 
00913   return HAL_OK;
00914 }
00915 
00916 /**
00917   * @brief  Set RTC current date.
00918   * @param  hrtc RTC handle
00919   * @param  sDate Pointer to date structure
00920   * @param  Format Format of sDate->Year, sDate->Month and sDate->Weekday.
00921   *          This parameter can be one of the following values:
00922   *            @arg RTC_FORMAT_BIN: Binary format
00923   *            @arg RTC_FORMAT_BCD: BCD format
00924   * @retval HAL status
00925   */
00926 HAL_StatusTypeDef HAL_RTC_SetDate(RTC_HandleTypeDef *hrtc, RTC_DateTypeDef *sDate, uint32_t Format)
00927 {
00928   uint32_t datetmpreg;
00929   HAL_StatusTypeDef status;
00930 
00931   /* Check the parameters */
00932   assert_param(IS_RTC_FORMAT(Format));
00933 
00934   /* Process Locked */
00935   __HAL_LOCK(hrtc);
00936 
00937   hrtc->State = HAL_RTC_STATE_BUSY;
00938 
00939   if ((Format == RTC_FORMAT_BIN) && ((sDate->Month & 0x10U) == 0x10U))
00940   {
00941     sDate->Month = (uint8_t)((sDate->Month & (uint8_t)~(0x10U)) + (uint8_t)0x0AU);
00942   }
00943 
00944   assert_param(IS_RTC_WEEKDAY(sDate->WeekDay));
00945 
00946   if (Format == RTC_FORMAT_BIN)
00947   {
00948     assert_param(IS_RTC_YEAR(sDate->Year));
00949     assert_param(IS_RTC_MONTH(sDate->Month));
00950     assert_param(IS_RTC_DATE(sDate->Date));
00951 
00952     datetmpreg = (((uint32_t)RTC_ByteToBcd2(sDate->Year) << RTC_DR_YU_Pos) | \
00953                   ((uint32_t)RTC_ByteToBcd2(sDate->Month) << RTC_DR_MU_Pos) | \
00954                   ((uint32_t)RTC_ByteToBcd2(sDate->Date) << RTC_DR_DU_Pos) | \
00955                   ((uint32_t)sDate->WeekDay << RTC_DR_WDU_Pos));
00956   }
00957   else
00958   {
00959     assert_param(IS_RTC_YEAR(RTC_Bcd2ToByte(sDate->Year)));
00960     assert_param(IS_RTC_MONTH(RTC_Bcd2ToByte(sDate->Month)));
00961     assert_param(IS_RTC_DATE(RTC_Bcd2ToByte(sDate->Date)));
00962 
00963     datetmpreg = ((((uint32_t)sDate->Year) << RTC_DR_YU_Pos) | \
00964                   (((uint32_t)sDate->Month) << RTC_DR_MU_Pos) | \
00965                   (((uint32_t)sDate->Date) << RTC_DR_DU_Pos) | \
00966                   (((uint32_t)sDate->WeekDay) << RTC_DR_WDU_Pos));
00967   }
00968 
00969   /* Disable the write protection for RTC registers */
00970   __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
00971 
00972   /* Enter Initialization mode */
00973   status = RTC_EnterInitMode(hrtc);
00974   if (status == HAL_OK)
00975   {
00976     /* Set the RTC_DR register */
00977     WRITE_REG(RTC->DR, (uint32_t)(datetmpreg & RTC_DR_RESERVED_MASK));
00978 
00979     /* Exit Initialization mode */
00980     status = RTC_ExitInitMode(hrtc);
00981   }
00982 
00983   /* Enable the write protection for RTC registers */
00984   __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
00985 
00986   if (status == HAL_OK)
00987   {
00988     hrtc->State = HAL_RTC_STATE_READY ;
00989   }
00990 
00991   /* Process Unlocked */
00992   __HAL_UNLOCK(hrtc);
00993 
00994   return status;
00995 }
00996 
00997 /**
00998   * @brief  Get RTC current date.
00999   * @note  You must call HAL_RTC_GetDate() after HAL_RTC_GetTime() to unlock the values
01000   *        in the higher-order calendar shadow registers to ensure consistency between the time and date values.
01001   *        Reading RTC current time locks the values in calendar shadow registers until Current date is read.
01002   * @param  hrtc RTC handle
01003   * @param  sDate Pointer to Date structure
01004   * @param  Format Format of sDate->Year, sDate->Month and sDate->Weekday.
01005   *          This parameter can be one of the following values:
01006   *            @arg RTC_FORMAT_BIN: Binary format
01007   *            @arg RTC_FORMAT_BCD: BCD format
01008   * @retval HAL status
01009   */
01010 HAL_StatusTypeDef HAL_RTC_GetDate(RTC_HandleTypeDef *hrtc, RTC_DateTypeDef *sDate, uint32_t Format)
01011 {
01012   uint32_t datetmpreg;
01013 
01014   UNUSED(hrtc);
01015   /* Check the parameters */
01016   assert_param(IS_RTC_FORMAT(Format));
01017 
01018   /* Get the DR register */
01019   datetmpreg = (uint32_t)(READ_REG(RTC->DR) & RTC_DR_RESERVED_MASK);
01020 
01021   /* Fill the structure fields with the read parameters */
01022   sDate->Year = (uint8_t)((datetmpreg & (RTC_DR_YT | RTC_DR_YU)) >> RTC_DR_YU_Pos);
01023   sDate->Month = (uint8_t)((datetmpreg & (RTC_DR_MT | RTC_DR_MU)) >> RTC_DR_MU_Pos);
01024   sDate->Date = (uint8_t)((datetmpreg & (RTC_DR_DT | RTC_DR_DU)) >> RTC_DR_DU_Pos);
01025   sDate->WeekDay = (uint8_t)((datetmpreg & (RTC_DR_WDU)) >> RTC_DR_WDU_Pos);
01026 
01027   /* Check the input parameters format */
01028   if (Format == RTC_FORMAT_BIN)
01029   {
01030     /* Convert the date structure parameters to Binary format */
01031     sDate->Year = (uint8_t)RTC_Bcd2ToByte(sDate->Year);
01032     sDate->Month = (uint8_t)RTC_Bcd2ToByte(sDate->Month);
01033     sDate->Date = (uint8_t)RTC_Bcd2ToByte(sDate->Date);
01034   }
01035   return HAL_OK;
01036 }
01037 
01038 /**
01039   * @}
01040   */
01041 
01042 /** @addtogroup RTC_Exported_Functions_Group3
01043  *  @brief   RTC Alarm functions
01044  *
01045 @verbatim
01046  ===============================================================================
01047                  ##### RTC Alarm functions #####
01048  ===============================================================================
01049 
01050  [..] This section provides functions allowing to configure Alarm feature
01051 
01052 @endverbatim
01053   * @{
01054   */
01055 /**
01056   * @brief  Set the specified RTC Alarm.
01057   * @param  hrtc RTC handle
01058   * @param  sAlarm Pointer to Alarm structure
01059   *          if Binary mode is RTC_BINARY_ONLY, 3 fields only are used
01060   *             sAlarm->AlarmTime.SubSeconds
01061   *             sAlarm->AlarmSubSecondMask
01062   *             sAlarm->BinaryAutoClr
01063   * @param  Format of the entered parameters.
01064   *          if Binary mode is RTC_BINARY_ONLY, this parameter is not used
01065   *          else this parameter can be one of the following values
01066   *             @arg RTC_FORMAT_BIN: Binary format
01067   *             @arg RTC_FORMAT_BCD: BCD format
01068   * @retval HAL status
01069   */
01070 HAL_StatusTypeDef HAL_RTC_SetAlarm(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Format)
01071 {
01072   uint32_t tmpreg = 0, binaryMode;
01073 
01074   __HAL_LOCK(hrtc);
01075   hrtc->State = HAL_RTC_STATE_BUSY;
01076 
01077 #ifdef  USE_FULL_ASSERT
01078   /* Check the parameters depending of the Binary mode (32-bit free-running counter configuration). */
01079   if (READ_BIT(RTC->ICSR, RTC_ICSR_BIN) == RTC_BINARY_NONE)
01080   {
01081     assert_param(IS_RTC_FORMAT(Format));
01082     assert_param(IS_RTC_ALARM(sAlarm->Alarm));
01083     assert_param(IS_RTC_ALARM_MASK(sAlarm->AlarmMask));
01084     assert_param(IS_RTC_ALARM_DATE_WEEKDAY_SEL(sAlarm->AlarmDateWeekDaySel));
01085     assert_param(IS_RTC_ALARM_SUB_SECOND_VALUE(sAlarm->AlarmTime.SubSeconds));
01086     assert_param(IS_RTC_ALARM_SUB_SECOND_MASK(sAlarm->AlarmSubSecondMask));
01087   }
01088   else if (READ_BIT(RTC->ICSR, RTC_ICSR_BIN) == RTC_BINARY_ONLY)
01089   {
01090     assert_param(IS_RTC_ALARM_SUB_SECOND_BINARY_MASK(sAlarm->AlarmSubSecondMask));
01091     assert_param(IS_RTC_ALARMSUBSECONDBIN_AUTOCLR(sAlarm->BinaryAutoClr));
01092   }
01093   else /* RTC_BINARY_MIX */
01094   {
01095     assert_param(IS_RTC_FORMAT(Format));
01096     assert_param(IS_RTC_ALARM(sAlarm->Alarm));
01097     assert_param(IS_RTC_ALARM_MASK(sAlarm->AlarmMask));
01098     assert_param(IS_RTC_ALARM_DATE_WEEKDAY_SEL(sAlarm->AlarmDateWeekDaySel));
01099     /* In Binary Mix Mode, the RTC can not generate an alarm on a match involving all calendar items + the upper SSR bits */
01100     assert_param((sAlarm->AlarmSubSecondMask >> RTC_ALRMASSR_MASKSS_Pos) <= (8U + (READ_BIT(RTC->ICSR, RTC_ICSR_BCDU) >> RTC_ICSR_BCDU_Pos)));
01101   }
01102 #endif
01103 
01104   /* Get Binary mode (32-bit free-running counter configuration) */
01105   binaryMode = READ_BIT(RTC->ICSR, RTC_ICSR_BIN);
01106 
01107   if (binaryMode != RTC_BINARY_ONLY)
01108   {
01109     if (Format == RTC_FORMAT_BIN)
01110     {
01111       if (READ_BIT(RTC->CR, RTC_CR_FMT) != 0U)
01112       {
01113         assert_param(IS_RTC_HOUR12(sAlarm->AlarmTime.Hours));
01114         assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
01115       }
01116       else
01117       {
01118         sAlarm->AlarmTime.TimeFormat = 0x00U;
01119         assert_param(IS_RTC_HOUR24(sAlarm->AlarmTime.Hours));
01120       }
01121       assert_param(IS_RTC_MINUTES(sAlarm->AlarmTime.Minutes));
01122       assert_param(IS_RTC_SECONDS(sAlarm->AlarmTime.Seconds));
01123 
01124       if (sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
01125       {
01126         assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(sAlarm->AlarmDateWeekDay));
01127       }
01128       else
01129       {
01130         assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(sAlarm->AlarmDateWeekDay));
01131       }
01132       tmpreg = (((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Hours) << RTC_ALRMAR_HU_Pos) | \
01133                 ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Minutes) << RTC_ALRMAR_MNU_Pos) | \
01134                 ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Seconds) << RTC_ALRMAR_SU_Pos) | \
01135                 ((uint32_t)(sAlarm->AlarmTime.TimeFormat) << RTC_ALRMAR_PM_Pos) | \
01136                 ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmDateWeekDay) << RTC_ALRMAR_DU_Pos) | \
01137                 ((uint32_t)sAlarm->AlarmDateWeekDaySel) | \
01138                 ((uint32_t)sAlarm->AlarmMask));
01139     }
01140     else /* format BCD */
01141     {
01142       if (READ_BIT(RTC->CR, RTC_CR_FMT) != 0U)
01143       {
01144         assert_param(IS_RTC_HOUR12(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)));
01145         assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
01146       }
01147       else
01148       {
01149         sAlarm->AlarmTime.TimeFormat = 0x00U;
01150         assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)));
01151       }
01152 
01153       assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(sAlarm->AlarmTime.Minutes)));
01154       assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(sAlarm->AlarmTime.Seconds)));
01155 
01156 #ifdef  USE_FULL_ASSERT
01157       if (sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
01158       {
01159         assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay)));
01160       }
01161       else
01162       {
01163         assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay)));
01164       }
01165 
01166 #endif /* USE_FULL_ASSERT */
01167       tmpreg = (((uint32_t)(sAlarm->AlarmTime.Hours) << RTC_ALRMAR_HU_Pos) | \
01168                 ((uint32_t)(sAlarm->AlarmTime.Minutes) << RTC_ALRMAR_MNU_Pos) | \
01169                 ((uint32_t)(sAlarm->AlarmTime.Seconds) << RTC_ALRMAR_SU_Pos) | \
01170                 ((uint32_t)(sAlarm->AlarmTime.TimeFormat) << RTC_ALRMAR_PM_Pos) | \
01171                 ((uint32_t)(sAlarm->AlarmDateWeekDay) << RTC_ALRMAR_DU_Pos) | \
01172                 ((uint32_t)sAlarm->AlarmDateWeekDaySel) | \
01173                 ((uint32_t)sAlarm->AlarmMask));
01174     }
01175   }
01176 
01177   /* Disable the write protection for RTC registers */
01178   __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
01179 
01180   /* Configure the Alarm register */
01181   if (sAlarm->Alarm == RTC_ALARM_A)
01182   {
01183     /* Disable the Alarm A interrupt */
01184     /* In case of interrupt mode is used, the interrupt source must disabled */
01185     CLEAR_BIT(RTC->CR, (RTC_CR_ALRAE | RTC_CR_ALRAIE));
01186 
01187     /* Clear flag alarm A */
01188     WRITE_REG(RTC->SCR, RTC_SCR_CALRAF);
01189 
01190     if (binaryMode == RTC_BINARY_ONLY)
01191     {
01192       WRITE_REG(RTC->ALRMASSR, sAlarm->AlarmSubSecondMask | sAlarm->BinaryAutoClr);
01193     }
01194     else
01195     {
01196       WRITE_REG(RTC->ALRMAR, tmpreg);
01197       WRITE_REG(RTC->ALRMASSR, sAlarm->AlarmSubSecondMask);
01198     }
01199 
01200     WRITE_REG(RTC->ALRABINR, sAlarm->AlarmTime.SubSeconds);
01201 
01202     /* Configure the Alarm state: Enable Alarm */
01203     SET_BIT(RTC->CR, RTC_CR_ALRAE);
01204   }
01205   else
01206   {
01207     /* Disable the Alarm B interrupt */
01208     /* In case of interrupt mode is used, the interrupt source must disabled */
01209     CLEAR_BIT(RTC->CR, (RTC_CR_ALRBE | RTC_CR_ALRBIE));
01210 
01211     /* Clear flag alarm B */
01212     WRITE_REG(RTC->SCR, RTC_SCR_CALRBF);
01213 
01214     if (binaryMode == RTC_BINARY_ONLY)
01215     {
01216       WRITE_REG(RTC->ALRMBSSR, sAlarm->AlarmSubSecondMask | sAlarm->BinaryAutoClr);
01217     }
01218     else
01219     {
01220       WRITE_REG(RTC->ALRMBR, tmpreg);
01221       WRITE_REG(RTC->ALRMBSSR,  sAlarm->AlarmSubSecondMask);
01222     }
01223 
01224     WRITE_REG(RTC->ALRBBINR, sAlarm->AlarmTime.SubSeconds);
01225 
01226     /* Configure the Alarm state: Enable Alarm */
01227     SET_BIT(RTC->CR, RTC_CR_ALRBE);
01228   }
01229 
01230   /* Enable the write protection for RTC registers */
01231   __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
01232 
01233   /* Change RTC state */
01234   hrtc->State = HAL_RTC_STATE_READY;
01235 
01236   /* Process Unlocked */
01237   __HAL_UNLOCK(hrtc);
01238 
01239   return HAL_OK;
01240 }
01241 
01242 /**
01243   * @brief  Set the specified RTC Alarm with Interrupt.
01244   * @param  hrtc RTC handle
01245   * @param  sAlarm Pointer to Alarm structure
01246   *          if Binary mode is RTC_BINARY_ONLY, 3 fields only are used
01247   *             sAlarm->AlarmTime.SubSeconds
01248   *             sAlarm->AlarmSubSecondMask
01249   *             sAlarm->BinaryAutoClr
01250   * @param  Format Specifies the format of the entered parameters.
01251   *          if Binary mode is RTC_BINARY_ONLY, this parameter is not used
01252   *          else this parameter can be one of the following values
01253   *             @arg RTC_FORMAT_BIN: Binary format
01254   *             @arg RTC_FORMAT_BCD: BCD format
01255   * @retval HAL status
01256   */
01257 HAL_StatusTypeDef HAL_RTC_SetAlarm_IT(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Format)
01258 {
01259   uint32_t tmpreg = 0, binaryMode;
01260 
01261   /* Process Locked */
01262   __HAL_LOCK(hrtc);
01263   hrtc->State = HAL_RTC_STATE_BUSY;
01264 
01265 #ifdef  USE_FULL_ASSERT
01266   /* Check the parameters depending of the Binary mode (32-bit free-running counter configuration). */
01267   if (READ_BIT(RTC->ICSR, RTC_ICSR_BIN) == RTC_BINARY_NONE)
01268   {
01269     assert_param(IS_RTC_FORMAT(Format));
01270     assert_param(IS_RTC_ALARM(sAlarm->Alarm));
01271     assert_param(IS_RTC_ALARM_MASK(sAlarm->AlarmMask));
01272     assert_param(IS_RTC_ALARM_DATE_WEEKDAY_SEL(sAlarm->AlarmDateWeekDaySel));
01273     assert_param(IS_RTC_ALARM_SUB_SECOND_VALUE(sAlarm->AlarmTime.SubSeconds));
01274     assert_param(IS_RTC_ALARM_SUB_SECOND_MASK(sAlarm->AlarmSubSecondMask));
01275   }
01276   else if (READ_BIT(RTC->ICSR, RTC_ICSR_BIN) == RTC_BINARY_ONLY)
01277   {
01278     assert_param(IS_RTC_ALARM_SUB_SECOND_BINARY_MASK(sAlarm->AlarmSubSecondMask));
01279     assert_param(IS_RTC_ALARMSUBSECONDBIN_AUTOCLR(sAlarm->BinaryAutoClr));
01280   }
01281   else /* RTC_BINARY_MIX */
01282   {
01283     assert_param(IS_RTC_FORMAT(Format));
01284     assert_param(IS_RTC_ALARM(sAlarm->Alarm));
01285     assert_param(IS_RTC_ALARM_MASK(sAlarm->AlarmMask));
01286     assert_param(IS_RTC_ALARM_DATE_WEEKDAY_SEL(sAlarm->AlarmDateWeekDaySel));
01287     /* In Binary Mix Mode, the RTC can not generate an alarm on a match involving all calendar items + the upper SSR bits */
01288     assert_param((sAlarm->AlarmSubSecondMask >> RTC_ALRMASSR_MASKSS_Pos) <= (8U + (READ_BIT(RTC->ICSR, RTC_ICSR_BCDU) >> RTC_ICSR_BCDU_Pos)));
01289   }
01290 #endif
01291 
01292   /* Get Binary mode (32-bit free-running counter configuration) */
01293   binaryMode = READ_BIT(RTC->ICSR, RTC_ICSR_BIN);
01294 
01295   if (binaryMode != RTC_BINARY_ONLY)
01296   {
01297     if (Format == RTC_FORMAT_BIN)
01298     {
01299       if (READ_BIT(RTC->CR, RTC_CR_FMT) != 0U)
01300       {
01301         assert_param(IS_RTC_HOUR12(sAlarm->AlarmTime.Hours));
01302         assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
01303       }
01304       else
01305       {
01306         sAlarm->AlarmTime.TimeFormat = 0x00U;
01307         assert_param(IS_RTC_HOUR24(sAlarm->AlarmTime.Hours));
01308       }
01309       assert_param(IS_RTC_MINUTES(sAlarm->AlarmTime.Minutes));
01310       assert_param(IS_RTC_SECONDS(sAlarm->AlarmTime.Seconds));
01311 
01312       if (sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
01313       {
01314         assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(sAlarm->AlarmDateWeekDay));
01315       }
01316       else
01317       {
01318         assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(sAlarm->AlarmDateWeekDay));
01319       }
01320       tmpreg = (((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Hours) << RTC_ALRMAR_HU_Pos) | \
01321                 ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Minutes) << RTC_ALRMAR_MNU_Pos) | \
01322                 ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Seconds) << RTC_ALRMAR_SU_Pos) | \
01323                 ((uint32_t)(sAlarm->AlarmTime.TimeFormat) << RTC_ALRMAR_PM_Pos) | \
01324                 ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmDateWeekDay) << RTC_ALRMAR_DU_Pos) | \
01325                 ((uint32_t)sAlarm->AlarmDateWeekDaySel) | \
01326                 ((uint32_t)sAlarm->AlarmMask));
01327     }
01328     else /* Format BCD */
01329     {
01330       if (READ_BIT(RTC->CR, RTC_CR_FMT) != 0U)
01331       {
01332         assert_param(IS_RTC_HOUR12(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)));
01333         assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
01334       }
01335       else
01336       {
01337         sAlarm->AlarmTime.TimeFormat = 0x00U;
01338         assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)));
01339       }
01340 
01341       assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(sAlarm->AlarmTime.Minutes)));
01342       assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(sAlarm->AlarmTime.Seconds)));
01343 
01344 #ifdef  USE_FULL_ASSERT
01345       if (sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
01346       {
01347         assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay)));
01348       }
01349       else
01350       {
01351         assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay)));
01352       }
01353 
01354 #endif /* USE_FULL_ASSERT */
01355       tmpreg = (((uint32_t)(sAlarm->AlarmTime.Hours) << RTC_ALRMAR_HU_Pos) | \
01356                 ((uint32_t)(sAlarm->AlarmTime.Minutes) << RTC_ALRMAR_MNU_Pos) | \
01357                 ((uint32_t)(sAlarm->AlarmTime.Seconds) << RTC_ALRMAR_SU_Pos) | \
01358                 ((uint32_t)(sAlarm->AlarmTime.TimeFormat) << RTC_ALRMAR_PM_Pos) | \
01359                 ((uint32_t)(sAlarm->AlarmDateWeekDay) << RTC_ALRMAR_DU_Pos) | \
01360                 ((uint32_t)sAlarm->AlarmDateWeekDaySel) | \
01361                 ((uint32_t)sAlarm->AlarmMask));
01362 
01363     }
01364   }
01365 
01366   /* Disable the write protection for RTC registers */
01367   __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
01368 
01369   /* Configure the Alarm register */
01370   if (sAlarm->Alarm == RTC_ALARM_A)
01371   {
01372     /* Disable the Alarm A interrupt */
01373     CLEAR_BIT(RTC->CR, RTC_CR_ALRAE | RTC_CR_ALRAIE);
01374     /* Clear flag alarm A */
01375     WRITE_REG(RTC->SCR, RTC_SCR_CALRAF);
01376 
01377     if (binaryMode == RTC_BINARY_ONLY)
01378     {
01379       RTC->ALRMASSR = sAlarm->AlarmSubSecondMask | sAlarm->BinaryAutoClr;
01380     }
01381     else
01382     {
01383       WRITE_REG(RTC->ALRMAR, tmpreg);
01384       WRITE_REG(RTC->ALRMASSR, sAlarm->AlarmSubSecondMask);
01385     }
01386 
01387     WRITE_REG(RTC->ALRABINR, sAlarm->AlarmTime.SubSeconds);
01388 
01389     /* Configure the Alarm interrupt */
01390     SET_BIT(RTC->CR, RTC_CR_ALRAE | RTC_CR_ALRAIE);
01391   }
01392   else
01393   {
01394     /* Disable the Alarm B interrupt */
01395     CLEAR_BIT(RTC->CR, RTC_CR_ALRBE | RTC_CR_ALRBIE);
01396     /* Clear flag alarm B */
01397     WRITE_REG(RTC->SCR, RTC_SCR_CALRBF);
01398 
01399     if (binaryMode == RTC_BINARY_ONLY)
01400     {
01401       WRITE_REG(RTC->ALRMBSSR, sAlarm->AlarmSubSecondMask | sAlarm->BinaryAutoClr);
01402     }
01403     else
01404     {
01405       WRITE_REG(RTC->ALRMBR, tmpreg);
01406       WRITE_REG(RTC->ALRMBSSR, sAlarm->AlarmSubSecondMask);
01407     }
01408 
01409     WRITE_REG(RTC->ALRBBINR, sAlarm->AlarmTime.SubSeconds);
01410 
01411     /* Configure the Alarm interrupt */
01412     SET_BIT(RTC->CR, RTC_CR_ALRBE | RTC_CR_ALRBIE);
01413   }
01414 
01415   /* RTC Alarm Interrupt Configuration: EXTI configuration */
01416   __HAL_RTC_ALARM_EXTI_ENABLE_IT();
01417   __HAL_RTC_ALARM_EXTI_ENABLE_RISING_EDGE();
01418 
01419   /* Enable the write protection for RTC registers */
01420   __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
01421 
01422   hrtc->State = HAL_RTC_STATE_READY;
01423 
01424   /* Process Unlocked */
01425   __HAL_UNLOCK(hrtc);
01426 
01427   return HAL_OK;
01428 }
01429 
01430 #else /* #if defined (STM32L4P5xx) || defined (STM32L4Q5xx) */
01431 
01432 /**
01433   * @brief  Set RTC current time.
01434   * @param  hrtc RTC handle
01435   * @param  sTime Pointer to Time structure
01436   * @param  Format Specifies the format of the entered parameters.
01437   *          This parameter can be one of the following values:
01438   *            @arg RTC_FORMAT_BIN: Binary data format
01439   *            @arg RTC_FORMAT_BCD: BCD data format
01440   * @retval HAL status
01441   */
01442 HAL_StatusTypeDef HAL_RTC_SetTime(RTC_HandleTypeDef *hrtc, RTC_TimeTypeDef *sTime, uint32_t Format)
01443 {
01444   uint32_t tmpreg;
01445   HAL_StatusTypeDef status;
01446 
01447   /* Check the parameters */
01448   assert_param(IS_RTC_FORMAT(Format));
01449   assert_param(IS_RTC_DAYLIGHT_SAVING(sTime->DayLightSaving));
01450   assert_param(IS_RTC_STORE_OPERATION(sTime->StoreOperation));
01451 
01452   /* Process Locked */
01453   __HAL_LOCK(hrtc);
01454 
01455   hrtc->State = HAL_RTC_STATE_BUSY;
01456 
01457   /* Disable the write protection for RTC registers */
01458   __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
01459 
01460   /* Enter Initialization mode */
01461   status = RTC_EnterInitMode(hrtc);
01462   if (status == HAL_OK)
01463   {
01464     if (Format == RTC_FORMAT_BIN)
01465     {
01466       if ((hrtc->Instance->CR & RTC_CR_FMT) != 0U)
01467       {
01468         assert_param(IS_RTC_HOUR12(sTime->Hours));
01469         assert_param(IS_RTC_HOURFORMAT12(sTime->TimeFormat));
01470       }
01471       else
01472       {
01473         sTime->TimeFormat = 0x00U;
01474         assert_param(IS_RTC_HOUR24(sTime->Hours));
01475       }
01476       assert_param(IS_RTC_MINUTES(sTime->Minutes));
01477       assert_param(IS_RTC_SECONDS(sTime->Seconds));
01478 
01479       tmpreg = (uint32_t)(((uint32_t)RTC_ByteToBcd2(sTime->Hours) << RTC_TR_HU_Pos) | \
01480                           ((uint32_t)RTC_ByteToBcd2(sTime->Minutes) << RTC_TR_MNU_Pos) | \
01481                           ((uint32_t)RTC_ByteToBcd2(sTime->Seconds) << RTC_TR_SU_Pos) | \
01482                           (((uint32_t)sTime->TimeFormat) << RTC_TR_PM_Pos));
01483     }
01484     else
01485     {
01486       if ((hrtc->Instance->CR & RTC_CR_FMT) != 0U)
01487       {
01488         assert_param(IS_RTC_HOUR12(RTC_Bcd2ToByte(sTime->Hours)));
01489         assert_param(IS_RTC_HOURFORMAT12(sTime->TimeFormat));
01490       }
01491       else
01492       {
01493         sTime->TimeFormat = 0x00U;
01494         assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(sTime->Hours)));
01495       }
01496       assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(sTime->Minutes)));
01497       assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(sTime->Seconds)));
01498       tmpreg = (((uint32_t)(sTime->Hours) << RTC_TR_HU_Pos) | \
01499                 ((uint32_t)(sTime->Minutes) << RTC_TR_MNU_Pos) | \
01500                 ((uint32_t)(sTime->Seconds) << RTC_TR_SU_Pos) | \
01501                 ((uint32_t)(sTime->TimeFormat) << RTC_TR_PM_Pos));
01502     }
01503 
01504     /* Set the RTC_TR register */
01505     hrtc->Instance->TR = (uint32_t)(tmpreg & RTC_TR_RESERVED_MASK);
01506 
01507     /* Clear the bits to be configured */
01508     hrtc->Instance->CR &= ((uint32_t)~RTC_CR_BKP);
01509 
01510     /* Configure the RTC_CR register */
01511     hrtc->Instance->CR |= (uint32_t)(sTime->DayLightSaving | sTime->StoreOperation);
01512 
01513     /* Exit Initialization mode */
01514     status = RTC_ExitInitMode(hrtc);
01515   }
01516 
01517   /* Enable the write protection for RTC registers */
01518   __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
01519 
01520   if (status == HAL_OK)
01521   {
01522     hrtc->State = HAL_RTC_STATE_READY;
01523   }
01524 
01525   /* Process Unlocked */
01526   __HAL_UNLOCK(hrtc);
01527 
01528   return status;
01529 }
01530 
01531 /**
01532   * @brief  Get RTC current time.
01533   * @note  You can use SubSeconds and SecondFraction (sTime structure fields returned) to convert SubSeconds
01534   *        value in second fraction ratio with time unit following generic formula:
01535   *        Second fraction ratio * time_unit= [(SecondFraction-SubSeconds)/(SecondFraction+1)] * time_unit
01536   *        This conversion can be performed only if no shift operation is pending (ie. SHFP=0) when PREDIV_S >= SS
01537   * @note  You must call HAL_RTC_GetDate() after HAL_RTC_GetTime() to unlock the values
01538   *        in the higher-order calendar shadow registers to ensure consistency between the time and date values.
01539   *        Reading RTC current time locks the values in calendar shadow registers until Current date is read
01540   *        to ensure consistency between the time and date values.
01541   * @param  hrtc RTC handle
01542   * @param  sTime Pointer to Time structure with Hours, Minutes and Seconds fields returned
01543   *                with input format (BIN or BCD), also SubSeconds field returning the
01544   *                RTC_SSR register content and SecondFraction field the Synchronous pre-scaler
01545   *                factor to be used for second fraction ratio computation.
01546   * @param  Format Specifies the format of the entered parameters.
01547   *          This parameter can be one of the following values:
01548   *            @arg RTC_FORMAT_BIN: Binary data format
01549   *            @arg RTC_FORMAT_BCD: BCD data format
01550   * @retval HAL status
01551   */
01552 HAL_StatusTypeDef HAL_RTC_GetTime(RTC_HandleTypeDef *hrtc, RTC_TimeTypeDef *sTime, uint32_t Format)
01553 {
01554   uint32_t tmpreg;
01555 
01556   /* Check the parameters */
01557   assert_param(IS_RTC_FORMAT(Format));
01558 
01559   /* Get subseconds structure field from the corresponding register*/
01560   sTime->SubSeconds = (uint32_t)(hrtc->Instance->SSR);
01561 
01562   /* Get SecondFraction structure field from the corresponding register field*/
01563   sTime->SecondFraction = (uint32_t)(hrtc->Instance->PRER & RTC_PRER_PREDIV_S);
01564 
01565   /* Get the TR register */
01566   tmpreg = (uint32_t)(hrtc->Instance->TR & RTC_TR_RESERVED_MASK);
01567 
01568   /* Fill the structure fields with the read parameters */
01569   sTime->Hours = (uint8_t)((tmpreg & (RTC_TR_HT | RTC_TR_HU)) >> RTC_TR_HU_Pos);
01570   sTime->Minutes = (uint8_t)((tmpreg & (RTC_TR_MNT | RTC_TR_MNU)) >> RTC_TR_MNU_Pos);
01571   sTime->Seconds = (uint8_t)((tmpreg & (RTC_TR_ST | RTC_TR_SU)) >> RTC_TR_SU_Pos);
01572   sTime->TimeFormat = (uint8_t)((tmpreg & (RTC_TR_PM)) >> RTC_TR_PM_Pos);
01573 
01574   /* Check the input parameters format */
01575   if (Format == RTC_FORMAT_BIN)
01576   {
01577     /* Convert the time structure parameters to Binary format */
01578     sTime->Hours = (uint8_t)RTC_Bcd2ToByte(sTime->Hours);
01579     sTime->Minutes = (uint8_t)RTC_Bcd2ToByte(sTime->Minutes);
01580     sTime->Seconds = (uint8_t)RTC_Bcd2ToByte(sTime->Seconds);
01581   }
01582 
01583   return HAL_OK;
01584 }
01585 
01586 /**
01587   * @brief  Set RTC current date.
01588   * @param  hrtc RTC handle
01589   * @param  sDate Pointer to date structure
01590   * @param  Format specifies the format of the entered parameters.
01591   *          This parameter can be one of the following values:
01592   *            @arg RTC_FORMAT_BIN: Binary data format
01593   *            @arg RTC_FORMAT_BCD: BCD data format
01594   * @retval HAL status
01595   */
01596 HAL_StatusTypeDef HAL_RTC_SetDate(RTC_HandleTypeDef *hrtc, RTC_DateTypeDef *sDate, uint32_t Format)
01597 {
01598   uint32_t datetmpreg;
01599   HAL_StatusTypeDef status;
01600 
01601   /* Check the parameters */
01602   assert_param(IS_RTC_FORMAT(Format));
01603 
01604   /* Process Locked */
01605   __HAL_LOCK(hrtc);
01606 
01607   hrtc->State = HAL_RTC_STATE_BUSY;
01608 
01609   if ((Format == RTC_FORMAT_BIN) && ((sDate->Month & 0x10U) == 0x10U))
01610   {
01611     sDate->Month = (uint8_t)((sDate->Month & (uint8_t)~(0x10U)) + (uint8_t)0x0AU);
01612   }
01613 
01614   assert_param(IS_RTC_WEEKDAY(sDate->WeekDay));
01615 
01616   if (Format == RTC_FORMAT_BIN)
01617   {
01618     assert_param(IS_RTC_YEAR(sDate->Year));
01619     assert_param(IS_RTC_MONTH(sDate->Month));
01620     assert_param(IS_RTC_DATE(sDate->Date));
01621 
01622     datetmpreg = (((uint32_t)RTC_ByteToBcd2(sDate->Year) << RTC_DR_YU_Pos) | \
01623                   ((uint32_t)RTC_ByteToBcd2(sDate->Month) << RTC_DR_MU_Pos) | \
01624                   ((uint32_t)RTC_ByteToBcd2(sDate->Date) << RTC_DR_DU_Pos) | \
01625                   ((uint32_t)sDate->WeekDay << RTC_DR_WDU_Pos));
01626   }
01627   else
01628   {
01629     assert_param(IS_RTC_YEAR(RTC_Bcd2ToByte(sDate->Year)));
01630     assert_param(IS_RTC_MONTH(RTC_Bcd2ToByte(sDate->Month)));
01631     assert_param(IS_RTC_DATE(RTC_Bcd2ToByte(sDate->Date)));
01632 
01633     datetmpreg = ((((uint32_t)sDate->Year) << RTC_DR_YU_Pos) | \
01634                   (((uint32_t)sDate->Month) << RTC_DR_MU_Pos) | \
01635                   (((uint32_t)sDate->Date) << RTC_DR_DU_Pos) | \
01636                   (((uint32_t)sDate->WeekDay) << RTC_DR_WDU_Pos));
01637   }
01638 
01639   /* Disable the write protection for RTC registers */
01640   __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
01641 
01642   /* Enter Initialization mode */
01643   status = RTC_EnterInitMode(hrtc);
01644   if (status == HAL_OK)
01645   {
01646     /* Set the RTC_DR register */
01647     hrtc->Instance->DR = (uint32_t)(datetmpreg & RTC_DR_RESERVED_MASK);
01648 
01649     /* Exit Initialization mode */
01650     status = RTC_ExitInitMode(hrtc);
01651   }
01652 
01653   /* Enable the write protection for RTC registers */
01654   __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
01655 
01656   if (status == HAL_OK)
01657   {
01658     hrtc->State = HAL_RTC_STATE_READY ;
01659   }
01660 
01661   /* Process Unlocked */
01662   __HAL_UNLOCK(hrtc);
01663 
01664   return status;
01665 }
01666 
01667 /**
01668   * @brief  Get RTC current date.
01669   * @note  You must call HAL_RTC_GetDate() after HAL_RTC_GetTime() to unlock the values
01670   *        in the higher-order calendar shadow registers to ensure consistency between the time and date values.
01671   *        Reading RTC current time locks the values in calendar shadow registers until Current date is read.
01672   * @param  hrtc RTC handle
01673   * @param  sDate Pointer to Date structure
01674   * @param  Format Specifies the format of the entered parameters.
01675   *          This parameter can be one of the following values:
01676   *            @arg RTC_FORMAT_BIN:  Binary data format
01677   *            @arg RTC_FORMAT_BCD:  BCD data format
01678   * @retval HAL status
01679   */
01680 HAL_StatusTypeDef HAL_RTC_GetDate(RTC_HandleTypeDef *hrtc, RTC_DateTypeDef *sDate, uint32_t Format)
01681 {
01682   uint32_t datetmpreg;
01683 
01684   /* Check the parameters */
01685   assert_param(IS_RTC_FORMAT(Format));
01686 
01687   /* Get the DR register */
01688   datetmpreg = (uint32_t)(hrtc->Instance->DR & RTC_DR_RESERVED_MASK);
01689 
01690   /* Fill the structure fields with the read parameters */
01691   sDate->Year = (uint8_t)((datetmpreg & (RTC_DR_YT | RTC_DR_YU)) >> RTC_DR_YU_Pos);
01692   sDate->Month = (uint8_t)((datetmpreg & (RTC_DR_MT | RTC_DR_MU)) >> RTC_DR_MU_Pos);
01693   sDate->Date = (uint8_t)((datetmpreg & (RTC_DR_DT | RTC_DR_DU)) >> RTC_DR_DU_Pos);
01694   sDate->WeekDay = (uint8_t)((datetmpreg & (RTC_DR_WDU)) >> RTC_DR_WDU_Pos);
01695 
01696   /* Check the input parameters format */
01697   if (Format == RTC_FORMAT_BIN)
01698   {
01699     /* Convert the date structure parameters to Binary format */
01700     sDate->Year = (uint8_t)RTC_Bcd2ToByte(sDate->Year);
01701     sDate->Month = (uint8_t)RTC_Bcd2ToByte(sDate->Month);
01702     sDate->Date = (uint8_t)RTC_Bcd2ToByte(sDate->Date);
01703   }
01704   return HAL_OK;
01705 }
01706 
01707 /**
01708   * @}
01709   */
01710 
01711 /** @addtogroup RTC_Exported_Functions_Group3
01712  *  @brief   RTC Alarm functions
01713  *
01714 @verbatim
01715  ===============================================================================
01716                  ##### RTC Alarm functions #####
01717  ===============================================================================
01718 
01719  [..] This section provides functions allowing to configure Alarm feature
01720 
01721 @endverbatim
01722   * @{
01723   */
01724 /**
01725   * @brief  Set the specified RTC Alarm.
01726   * @param  hrtc RTC handle
01727   * @param  sAlarm Pointer to Alarm structure
01728   * @param  Format Specifies the format of the entered parameters.
01729   *          This parameter can be one of the following values:
01730   *             @arg RTC_FORMAT_BIN: Binary data format
01731   *             @arg RTC_FORMAT_BCD: BCD data format
01732   * @retval HAL status
01733   */
01734 HAL_StatusTypeDef HAL_RTC_SetAlarm(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Format)
01735 {
01736   uint32_t tmpreg, subsecondtmpreg;
01737 
01738   /* Check the parameters */
01739   assert_param(IS_RTC_FORMAT(Format));
01740   assert_param(IS_RTC_ALARM(sAlarm->Alarm));
01741   assert_param(IS_RTC_ALARM_MASK(sAlarm->AlarmMask));
01742   assert_param(IS_RTC_ALARM_DATE_WEEKDAY_SEL(sAlarm->AlarmDateWeekDaySel));
01743   assert_param(IS_RTC_ALARM_SUB_SECOND_VALUE(sAlarm->AlarmTime.SubSeconds));
01744   assert_param(IS_RTC_ALARM_SUB_SECOND_MASK(sAlarm->AlarmSubSecondMask));
01745 
01746   /* Process Locked */
01747   __HAL_LOCK(hrtc);
01748 
01749   hrtc->State = HAL_RTC_STATE_BUSY;
01750 
01751   if (Format == RTC_FORMAT_BIN)
01752   {
01753     if ((hrtc->Instance->CR & RTC_CR_FMT) != 0U)
01754     {
01755       assert_param(IS_RTC_HOUR12(sAlarm->AlarmTime.Hours));
01756       assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
01757     }
01758     else
01759     {
01760       sAlarm->AlarmTime.TimeFormat = 0x00U;
01761       assert_param(IS_RTC_HOUR24(sAlarm->AlarmTime.Hours));
01762     }
01763     assert_param(IS_RTC_MINUTES(sAlarm->AlarmTime.Minutes));
01764     assert_param(IS_RTC_SECONDS(sAlarm->AlarmTime.Seconds));
01765 
01766     if (sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
01767     {
01768       assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(sAlarm->AlarmDateWeekDay));
01769     }
01770     else
01771     {
01772       assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(sAlarm->AlarmDateWeekDay));
01773     }
01774     tmpreg = (((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Hours) << RTC_ALRMAR_HU_Pos) | \
01775               ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Minutes) << RTC_ALRMAR_MNU_Pos) | \
01776               ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Seconds) << RTC_ALRMAR_SU_Pos) | \
01777               ((uint32_t)(sAlarm->AlarmTime.TimeFormat) << RTC_ALRMAR_PM_Pos) | \
01778               ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmDateWeekDay) << RTC_ALRMAR_DU_Pos) | \
01779               ((uint32_t)sAlarm->AlarmDateWeekDaySel) | \
01780               ((uint32_t)sAlarm->AlarmMask));
01781   }
01782   else
01783   {
01784     if ((hrtc->Instance->CR & RTC_CR_FMT) != 0U)
01785     {
01786       assert_param(IS_RTC_HOUR12(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)));
01787       assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
01788     }
01789     else
01790     {
01791       sAlarm->AlarmTime.TimeFormat = 0x00U;
01792       assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)));
01793     }
01794 
01795     assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(sAlarm->AlarmTime.Minutes)));
01796     assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(sAlarm->AlarmTime.Seconds)));
01797 
01798 #ifdef  USE_FULL_ASSERT
01799     if (sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
01800     {
01801       assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay)));
01802     }
01803     else
01804     {
01805       assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay)));
01806     }
01807 
01808 #endif /* USE_FULL_ASSERT */
01809     tmpreg = (((uint32_t)(sAlarm->AlarmTime.Hours) << RTC_ALRMAR_HU_Pos) | \
01810               ((uint32_t)(sAlarm->AlarmTime.Minutes) << RTC_ALRMAR_MNU_Pos) | \
01811               ((uint32_t)(sAlarm->AlarmTime.Seconds) << RTC_ALRMAR_SU_Pos) | \
01812               ((uint32_t)(sAlarm->AlarmTime.TimeFormat) << RTC_ALRMAR_PM_Pos) | \
01813               ((uint32_t)(sAlarm->AlarmDateWeekDay) << RTC_ALRMAR_DU_Pos) | \
01814               ((uint32_t)sAlarm->AlarmDateWeekDaySel) | \
01815               ((uint32_t)sAlarm->AlarmMask));
01816   }
01817 
01818   /* Configure the Alarm A or Alarm B Sub Second registers */
01819   subsecondtmpreg = (uint32_t)((uint32_t)(sAlarm->AlarmTime.SubSeconds) | (uint32_t)(sAlarm->AlarmSubSecondMask));
01820 
01821   /* Disable the write protection for RTC registers */
01822   __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
01823 
01824   /* Configure the Alarm register */
01825   if (sAlarm->Alarm == RTC_ALARM_A)
01826   {
01827     /* Disable the Alarm A interrupt */
01828     __HAL_RTC_ALARMA_DISABLE(hrtc);
01829     /* Clear flag alarm A */
01830     __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRAF);
01831     /* In case of interrupt mode is used, the interrupt source must disabled */
01832     __HAL_RTC_ALARM_DISABLE_IT(hrtc, RTC_IT_ALRA);
01833 
01834 #if defined (RTC_FLAG_ALRAWF)
01835     uint32_t tickstart = HAL_GetTick();
01836     /* Wait till RTC ALRAWF flag is set and if Time out is reached exit */
01837     while (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAWF) == 0U)
01838     {
01839       if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE)
01840       {
01841         /* Enable the write protection for RTC registers */
01842         __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
01843 
01844         hrtc->State = HAL_RTC_STATE_TIMEOUT;
01845 
01846         /* Process Unlocked */
01847         __HAL_UNLOCK(hrtc);
01848 
01849         return HAL_TIMEOUT;
01850       }
01851     }
01852 #endif
01853 
01854     hrtc->Instance->ALRMAR = (uint32_t)tmpreg;
01855     /* Configure the Alarm A Sub Second register */
01856     hrtc->Instance->ALRMASSR = subsecondtmpreg;
01857     /* Configure the Alarm state: Enable Alarm */
01858     __HAL_RTC_ALARMA_ENABLE(hrtc);
01859   }
01860   else
01861   {
01862     /* Disable the Alarm B interrupt */
01863     __HAL_RTC_ALARMB_DISABLE(hrtc);
01864     /* Clear flag alarm B */
01865     __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRBF);
01866     /* In case of interrupt mode is used, the interrupt source must disabled */
01867     __HAL_RTC_ALARM_DISABLE_IT(hrtc, RTC_IT_ALRB);
01868 
01869 #if defined (RTC_FLAG_ALRBWF)
01870     uint32_t tickstart = HAL_GetTick();
01871     /* Wait till RTC ALRBWF flag is set and if Time out is reached exit */
01872     while (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRBWF) == 0U)
01873     {
01874       if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE)
01875       {
01876         /* Enable the write protection for RTC registers */
01877         __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
01878 
01879         hrtc->State = HAL_RTC_STATE_TIMEOUT;
01880 
01881         /* Process Unlocked */
01882         __HAL_UNLOCK(hrtc);
01883 
01884         return HAL_TIMEOUT;
01885       }
01886     }
01887 #endif
01888 
01889     hrtc->Instance->ALRMBR = (uint32_t)tmpreg;
01890     /* Configure the Alarm B Sub Second register */
01891     hrtc->Instance->ALRMBSSR = subsecondtmpreg;
01892     /* Configure the Alarm state: Enable Alarm */
01893     __HAL_RTC_ALARMB_ENABLE(hrtc);
01894   }
01895 
01896   /* Enable the write protection for RTC registers */
01897   __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
01898 
01899   /* Change RTC state */
01900   hrtc->State = HAL_RTC_STATE_READY;
01901 
01902   /* Process Unlocked */
01903   __HAL_UNLOCK(hrtc);
01904 
01905   return HAL_OK;
01906 }
01907 
01908 /**
01909   * @brief  Set the specified RTC Alarm with Interrupt.
01910   * @note   The Alarm register can only be written when the corresponding Alarm
01911   *         is disabled (Use the HAL_RTC_DeactivateAlarm()).
01912   * @note   The HAL_RTC_SetTime() must be called before enabling the Alarm feature.
01913   * @param  hrtc RTC handle
01914   * @param  sAlarm Pointer to Alarm structure
01915   * @param  Format Specifies the format of the entered parameters.
01916   *          This parameter can be one of the following values:
01917   *             @arg RTC_FORMAT_BIN: Binary data format
01918   *             @arg RTC_FORMAT_BCD: BCD data format
01919   * @retval HAL status
01920   */
01921 HAL_StatusTypeDef HAL_RTC_SetAlarm_IT(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Format)
01922 {
01923   uint32_t tmpreg, subsecondtmpreg;
01924 
01925   /* Check the parameters */
01926   assert_param(IS_RTC_FORMAT(Format));
01927   assert_param(IS_RTC_ALARM(sAlarm->Alarm));
01928   assert_param(IS_RTC_ALARM_MASK(sAlarm->AlarmMask));
01929   assert_param(IS_RTC_ALARM_DATE_WEEKDAY_SEL(sAlarm->AlarmDateWeekDaySel));
01930   assert_param(IS_RTC_ALARM_SUB_SECOND_VALUE(sAlarm->AlarmTime.SubSeconds));
01931   assert_param(IS_RTC_ALARM_SUB_SECOND_MASK(sAlarm->AlarmSubSecondMask));
01932 
01933   /* Process Locked */
01934   __HAL_LOCK(hrtc);
01935 
01936   hrtc->State = HAL_RTC_STATE_BUSY;
01937 
01938   if (Format == RTC_FORMAT_BIN)
01939   {
01940     if ((hrtc->Instance->CR & RTC_CR_FMT) != 0U)
01941     {
01942       assert_param(IS_RTC_HOUR12(sAlarm->AlarmTime.Hours));
01943       assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
01944     }
01945     else
01946     {
01947       sAlarm->AlarmTime.TimeFormat = 0x00U;
01948       assert_param(IS_RTC_HOUR24(sAlarm->AlarmTime.Hours));
01949     }
01950     assert_param(IS_RTC_MINUTES(sAlarm->AlarmTime.Minutes));
01951     assert_param(IS_RTC_SECONDS(sAlarm->AlarmTime.Seconds));
01952 
01953     if (sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
01954     {
01955       assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(sAlarm->AlarmDateWeekDay));
01956     }
01957     else
01958     {
01959       assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(sAlarm->AlarmDateWeekDay));
01960     }
01961 
01962     tmpreg = (((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Hours) << RTC_ALRMAR_HU_Pos) | \
01963               ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Minutes) << RTC_ALRMAR_MNU_Pos) | \
01964               ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Seconds) << RTC_ALRMAR_SU_Pos) | \
01965               ((uint32_t)(sAlarm->AlarmTime.TimeFormat) << RTC_ALRMAR_PM_Pos) | \
01966               ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmDateWeekDay) << RTC_ALRMAR_DU_Pos) | \
01967               ((uint32_t)sAlarm->AlarmDateWeekDaySel) | \
01968               ((uint32_t)sAlarm->AlarmMask));
01969   }
01970   else
01971   {
01972     if ((hrtc->Instance->CR & RTC_CR_FMT) != 0U)
01973     {
01974       assert_param(IS_RTC_HOUR12(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)));
01975       assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
01976     }
01977     else
01978     {
01979       sAlarm->AlarmTime.TimeFormat = 0x00U;
01980       assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)));
01981     }
01982 
01983     assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(sAlarm->AlarmTime.Minutes)));
01984     assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(sAlarm->AlarmTime.Seconds)));
01985 
01986 #ifdef  USE_FULL_ASSERT
01987     if (sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
01988     {
01989       assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay)));
01990     }
01991     else
01992     {
01993       assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay)));
01994     }
01995 
01996 #endif /* USE_FULL_ASSERT */
01997     tmpreg = (((uint32_t)(sAlarm->AlarmTime.Hours) << RTC_ALRMAR_HU_Pos) | \
01998               ((uint32_t)(sAlarm->AlarmTime.Minutes) << RTC_ALRMAR_MNU_Pos) | \
01999               ((uint32_t)(sAlarm->AlarmTime.Seconds) << RTC_ALRMAR_SU_Pos) | \
02000               ((uint32_t)(sAlarm->AlarmTime.TimeFormat) << RTC_ALRMAR_PM_Pos) | \
02001               ((uint32_t)(sAlarm->AlarmDateWeekDay) << RTC_ALRMAR_DU_Pos) | \
02002               ((uint32_t)sAlarm->AlarmDateWeekDaySel) | \
02003               ((uint32_t)sAlarm->AlarmMask));
02004   }
02005   /* Configure the Alarm A or Alarm B Sub Second registers */
02006   subsecondtmpreg = (uint32_t)((uint32_t)(sAlarm->AlarmTime.SubSeconds) | (uint32_t)(sAlarm->AlarmSubSecondMask));
02007 
02008   /* Disable the write protection for RTC registers */
02009   __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
02010 
02011   /* Configure the Alarm register */
02012   if (sAlarm->Alarm == RTC_ALARM_A)
02013   {
02014     /* Disable the Alarm A interrupt */
02015     __HAL_RTC_ALARMA_DISABLE(hrtc);
02016 
02017     /* Clear flag alarm A */
02018     __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRAF);
02019 
02020 #if defined (RTC_FLAG_ALRAWF)
02021     uint32_t tickstart = HAL_GetTick();
02022     /* Wait till RTC ALRAWF flag is set and if Time out is reached exit */
02023     while (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAWF) == 0U)
02024     {
02025       if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE)
02026       {
02027         /* Enable the write protection for RTC registers */
02028         __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
02029 
02030         hrtc->State = HAL_RTC_STATE_TIMEOUT;
02031 
02032         /* Process Unlocked */
02033         __HAL_UNLOCK(hrtc);
02034 
02035         return HAL_TIMEOUT;
02036       }
02037     }
02038 #endif
02039 
02040     hrtc->Instance->ALRMAR = (uint32_t)tmpreg;
02041     /* Configure the Alarm A Sub Second register */
02042     hrtc->Instance->ALRMASSR = subsecondtmpreg;
02043     /* Configure the Alarm state: Enable Alarm */
02044     __HAL_RTC_ALARMA_ENABLE(hrtc);
02045     /* Configure the Alarm interrupt */
02046     __HAL_RTC_ALARM_ENABLE_IT(hrtc, RTC_IT_ALRA);
02047   }
02048   else
02049   {
02050     /* Disable the Alarm B interrupt */
02051     __HAL_RTC_ALARMB_DISABLE(hrtc);
02052 
02053     /* Clear flag alarm B */
02054     __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRBF);
02055 
02056 #if defined (RTC_FLAG_ALRBWF)
02057     uint32_t tickstart = HAL_GetTick();
02058     /* Wait till RTC ALRBWF flag is set and if Time out is reached exit */
02059     while (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRBWF) == 0U)
02060     {
02061       if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE)
02062       {
02063         /* Enable the write protection for RTC registers */
02064         __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
02065 
02066         hrtc->State = HAL_RTC_STATE_TIMEOUT;
02067 
02068         /* Process Unlocked */
02069         __HAL_UNLOCK(hrtc);
02070 
02071         return HAL_TIMEOUT;
02072       }
02073     }
02074 #endif
02075 
02076     hrtc->Instance->ALRMBR = (uint32_t)tmpreg;
02077     /* Configure the Alarm B Sub Second register */
02078     hrtc->Instance->ALRMBSSR = subsecondtmpreg;
02079     /* Configure the Alarm state: Enable Alarm */
02080     __HAL_RTC_ALARMB_ENABLE(hrtc);
02081     /* Configure the Alarm interrupt */
02082     __HAL_RTC_ALARM_ENABLE_IT(hrtc, RTC_IT_ALRB);
02083   }
02084 
02085   /* RTC Alarm Interrupt Configuration: EXTI configuration */
02086   __HAL_RTC_ALARM_EXTI_ENABLE_IT();
02087   __HAL_RTC_ALARM_EXTI_ENABLE_RISING_EDGE();
02088 
02089   /* Enable the write protection for RTC registers */
02090   __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
02091 
02092   hrtc->State = HAL_RTC_STATE_READY;
02093 
02094   /* Process Unlocked */
02095   __HAL_UNLOCK(hrtc);
02096 
02097   return HAL_OK;
02098 }
02099 
02100 #endif /* #if defined (STM32L4P5xx) || defined (STM32L4Q5xx) */
02101 
02102 /**
02103   * @brief  Deactivate the specified RTC Alarm.
02104   * @param  hrtc RTC handle
02105   * @param  Alarm Specifies the Alarm.
02106   *          This parameter can be one of the following values:
02107   *            @arg RTC_ALARM_A:  AlarmA
02108   *            @arg RTC_ALARM_B:  AlarmB
02109   * @retval HAL status
02110   */
02111 HAL_StatusTypeDef HAL_RTC_DeactivateAlarm(RTC_HandleTypeDef *hrtc, uint32_t Alarm)
02112 {
02113   /* Check the parameters */
02114   assert_param(IS_RTC_ALARM(Alarm));
02115 
02116   /* Process Locked */
02117   __HAL_LOCK(hrtc);
02118 
02119   hrtc->State = HAL_RTC_STATE_BUSY;
02120 
02121   /* Disable the write protection for RTC registers */
02122   __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
02123 
02124   if (Alarm == RTC_ALARM_A)
02125   {
02126     /* AlarmA */
02127 #if defined (RTC_ALRMASSR_SSCLR)
02128     CLEAR_BIT(RTC->ALRMASSR, RTC_ALRMASSR_SSCLR);
02129 #endif
02130 
02131     __HAL_RTC_ALARMA_DISABLE(hrtc);
02132 
02133     /* In case of interrupt mode is used, the interrupt source must disabled */
02134     __HAL_RTC_ALARM_DISABLE_IT(hrtc, RTC_IT_ALRA);
02135 
02136 #if defined (RTC_FLAG_ALRAWF)
02137     uint32_t tickstart = HAL_GetTick();
02138     /* Wait till RTC ALRxWF flag is set and if Time out is reached exit */
02139     while (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAWF) == 0U)
02140     {
02141       if ((HAL_GetTick()  - tickstart) > RTC_TIMEOUT_VALUE)
02142       {
02143         /* Enable the write protection for RTC registers */
02144         __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
02145 
02146         hrtc->State = HAL_RTC_STATE_TIMEOUT;
02147 
02148         /* Process Unlocked */
02149         __HAL_UNLOCK(hrtc);
02150 
02151         return HAL_TIMEOUT;
02152       }
02153     }
02154 #endif
02155   }
02156   else
02157   {
02158     /* AlarmB */
02159 #if defined (RTC_ALRMBSSR_SSCLR)
02160     CLEAR_BIT(RTC->ALRMBSSR, RTC_ALRMASSR_SSCLR);
02161 #endif
02162 
02163     __HAL_RTC_ALARMB_DISABLE(hrtc);
02164 
02165     /* In case of interrupt mode is used, the interrupt source must disabled */
02166     __HAL_RTC_ALARM_DISABLE_IT(hrtc, RTC_IT_ALRB);
02167 
02168 #if defined (RTC_FLAG_ALRBWF)
02169     uint32_t tickstart = HAL_GetTick();
02170     /* Wait till RTC ALRBWF flag is set and if Time out is reached exit */
02171     while (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRBWF) == 0U)
02172     {
02173       if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE)
02174       {
02175         /* Enable the write protection for RTC registers */
02176         __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
02177 
02178         hrtc->State = HAL_RTC_STATE_TIMEOUT;
02179 
02180         /* Process Unlocked */
02181         __HAL_UNLOCK(hrtc);
02182 
02183         return HAL_TIMEOUT;
02184       }
02185     }
02186 #endif
02187   }
02188   /* Enable the write protection for RTC registers */
02189   __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
02190 
02191   hrtc->State = HAL_RTC_STATE_READY;
02192 
02193   /* Process Unlocked */
02194   __HAL_UNLOCK(hrtc);
02195 
02196   return HAL_OK;
02197 }
02198 
02199 /**
02200   * @brief  Get the RTC Alarm value and masks.
02201   * @param  hrtc RTC handle
02202   * @param  sAlarm Pointer to Date structure
02203   * @param  Alarm Specifies the Alarm.
02204   *          This parameter can be one of the following values:
02205   *             @arg RTC_ALARM_A: AlarmA
02206   *             @arg RTC_ALARM_B: AlarmB
02207   * @param  Format Specifies the format of the entered parameters.
02208   *          This parameter can be one of the following values:
02209   *             @arg RTC_FORMAT_BIN: Binary data format
02210   *             @arg RTC_FORMAT_BCD: BCD data format
02211   * @retval HAL status
02212   */
02213 HAL_StatusTypeDef HAL_RTC_GetAlarm(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Alarm, uint32_t Format)
02214 {
02215   uint32_t tmpreg, subsecondtmpreg;
02216 
02217   /* Check the parameters */
02218   assert_param(IS_RTC_FORMAT(Format));
02219   assert_param(IS_RTC_ALARM(Alarm));
02220 
02221   if (Alarm == RTC_ALARM_A)
02222   {
02223     /* AlarmA */
02224     sAlarm->Alarm = RTC_ALARM_A;
02225 
02226     tmpreg = (uint32_t)(hrtc->Instance->ALRMAR);
02227     subsecondtmpreg = (uint32_t)((hrtc->Instance->ALRMASSR) & RTC_ALRMASSR_SS);
02228 
02229     /* Fill the structure with the read parameters */
02230     sAlarm->AlarmTime.Hours = (uint8_t)((tmpreg & (RTC_ALRMAR_HT | RTC_ALRMAR_HU)) >> RTC_ALRMAR_HU_Pos);
02231     sAlarm->AlarmTime.Minutes = (uint8_t)((tmpreg & (RTC_ALRMAR_MNT | RTC_ALRMAR_MNU)) >> RTC_ALRMAR_MNU_Pos);
02232     sAlarm->AlarmTime.Seconds = (uint8_t)((tmpreg & (RTC_ALRMAR_ST | RTC_ALRMAR_SU)) >> RTC_ALRMAR_SU_Pos);
02233     sAlarm->AlarmTime.TimeFormat = (uint8_t)((tmpreg & RTC_ALRMAR_PM) >> RTC_ALRMAR_PM_Pos);
02234     sAlarm->AlarmTime.SubSeconds = (uint32_t) subsecondtmpreg;
02235     sAlarm->AlarmDateWeekDay = (uint8_t)((tmpreg & (RTC_ALRMAR_DT | RTC_ALRMAR_DU)) >> RTC_ALRMAR_DU_Pos);
02236     sAlarm->AlarmDateWeekDaySel = (uint32_t)(tmpreg & RTC_ALRMAR_WDSEL);
02237     sAlarm->AlarmMask = (uint32_t)(tmpreg & RTC_ALARMMASK_ALL);
02238   }
02239   else
02240   {
02241     sAlarm->Alarm = RTC_ALARM_B;
02242 
02243     tmpreg = (uint32_t)(hrtc->Instance->ALRMBR);
02244     subsecondtmpreg = (uint32_t)((hrtc->Instance->ALRMBSSR) & RTC_ALRMBSSR_SS);
02245 
02246     /* Fill the structure with the read parameters */
02247     sAlarm->AlarmTime.Hours = (uint8_t)((tmpreg & (RTC_ALRMBR_HT | RTC_ALRMBR_HU)) >> RTC_ALRMBR_HU_Pos);
02248     sAlarm->AlarmTime.Minutes = (uint8_t)((tmpreg & (RTC_ALRMBR_MNT | RTC_ALRMBR_MNU)) >> RTC_ALRMBR_MNU_Pos);
02249     sAlarm->AlarmTime.Seconds = (uint8_t)((tmpreg & (RTC_ALRMBR_ST | RTC_ALRMBR_SU)) >> RTC_ALRMBR_SU_Pos);
02250     sAlarm->AlarmTime.TimeFormat = (uint8_t)((tmpreg & RTC_ALRMBR_PM) >> RTC_ALRMBR_PM_Pos);
02251     sAlarm->AlarmTime.SubSeconds = (uint32_t) subsecondtmpreg;
02252     sAlarm->AlarmDateWeekDay = (uint8_t)((tmpreg & (RTC_ALRMBR_DT | RTC_ALRMBR_DU)) >> RTC_ALRMBR_DU_Pos);
02253     sAlarm->AlarmDateWeekDaySel = (uint32_t)(tmpreg & RTC_ALRMBR_WDSEL);
02254     sAlarm->AlarmMask = (uint32_t)(tmpreg & RTC_ALARMMASK_ALL);
02255   }
02256 
02257   if (Format == RTC_FORMAT_BIN)
02258   {
02259     sAlarm->AlarmTime.Hours = RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours);
02260     sAlarm->AlarmTime.Minutes = RTC_Bcd2ToByte(sAlarm->AlarmTime.Minutes);
02261     sAlarm->AlarmTime.Seconds = RTC_Bcd2ToByte(sAlarm->AlarmTime.Seconds);
02262     sAlarm->AlarmDateWeekDay = RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay);
02263   }
02264 
02265   return HAL_OK;
02266 }
02267 
02268 
02269 /**
02270   * @brief  Daylight Saving Time, Add one hour to the calendar in one single operation
02271   *         without going through the initialization procedure.
02272   * @param  hrtc RTC handle
02273   * @retval None
02274   */
02275 void HAL_RTC_DST_Add1Hour(RTC_HandleTypeDef *hrtc)
02276 {
02277   __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
02278   SET_BIT(hrtc->Instance->CR, RTC_CR_ADD1H);
02279   __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
02280 }
02281 
02282 /**
02283   * @brief  Daylight Saving Time, Substract one hour from the calendar in one
02284   *         single operation without going through the initialization procedure.
02285   * @param  hrtc RTC handle
02286   * @retval None
02287   */
02288 void HAL_RTC_DST_Sub1Hour(RTC_HandleTypeDef *hrtc)
02289 {
02290   __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
02291   SET_BIT(hrtc->Instance->CR, RTC_CR_SUB1H);
02292   __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
02293 }
02294 
02295 /**
02296   * @brief  Daylight Saving Time, Set the store operation bit.
02297   * @note   It can be used by the software in order to memorize the DST status.
02298   * @param  hrtc RTC handle
02299   * @retval None
02300   */
02301 void HAL_RTC_DST_SetStoreOperation(RTC_HandleTypeDef *hrtc)
02302 {
02303   __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
02304   SET_BIT(hrtc->Instance->CR, RTC_CR_BKP);
02305   __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
02306 }
02307 
02308 /**
02309   * @brief  Daylight Saving Time, Clear the store operation bit.
02310   * @param  hrtc RTC handle
02311   * @retval None
02312   */
02313 void HAL_RTC_DST_ClearStoreOperation(RTC_HandleTypeDef *hrtc)
02314 {
02315   __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
02316   CLEAR_BIT(hrtc->Instance->CR, RTC_CR_BKP);
02317   __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
02318 }
02319 
02320 /**
02321   * @brief  Daylight Saving Time, Read the store operation bit.
02322   * @param  hrtc RTC handle
02323   * @retval operation see RTC_StoreOperation_Definitions
02324   */
02325 uint32_t HAL_RTC_DST_ReadStoreOperation(RTC_HandleTypeDef *hrtc)
02326 {
02327   return READ_BIT(hrtc->Instance->CR, RTC_CR_BKP);
02328 }
02329 
02330 /**
02331   * @brief  Handle Alarm interrupt request.
02332   * @param  hrtc RTC handle
02333   * @retval None
02334   */
02335 void HAL_RTC_AlarmIRQHandler(RTC_HandleTypeDef *hrtc)
02336 {
02337   /* Clear the EXTI's line Flag for RTC Alarm */
02338   __HAL_RTC_ALARM_EXTI_CLEAR_FLAG();
02339 
02340 #if defined(STM32L412xx) || defined(STM32L422xx) || defined (STM32L4P5xx) || defined (STM32L4Q5xx)
02341   /* Get interrupt status */
02342   uint32_t tmp = hrtc->Instance->MISR;
02343 
02344   if ((tmp & RTC_MISR_ALRAMF) != 0u)
02345   {
02346     /* Clear the AlarmA interrupt pending bit */
02347     hrtc->Instance->SCR = RTC_SCR_CALRAF;
02348 
02349 #if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
02350     /* Call Compare Match registered Callback */
02351     hrtc->AlarmAEventCallback(hrtc);
02352 #else  /* (USE_HAL_RTC_REGISTER_CALLBACKS == 1) */
02353     HAL_RTC_AlarmAEventCallback(hrtc);
02354 #endif /* (USE_HAL_RTC_REGISTER_CALLBACKS == 1) */
02355   }
02356 
02357   if ((tmp & RTC_MISR_ALRBMF) != 0u)
02358   {
02359     /* Clear the AlarmB interrupt pending bit */
02360     hrtc->Instance->SCR = RTC_SCR_CALRBF;
02361 
02362 #if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
02363     /* Call Compare Match registered Callback */
02364     hrtc->AlarmBEventCallback(hrtc);
02365 #else
02366     HAL_RTCEx_AlarmBEventCallback(hrtc);
02367 #endif
02368   }
02369 
02370 #else /* #if defined(STM32L412xx) || defined(STM32L422xx) || defined (STM32L4P5xx) || defined (STM32L4Q5xx) */
02371 
02372   /* Get the AlarmA interrupt source enable status */
02373   if (__HAL_RTC_ALARM_GET_IT_SOURCE(hrtc, RTC_IT_ALRA) != 0U)
02374   {
02375     /* Get the pending status of the AlarmA Interrupt */
02376     if (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAF) != 0U)
02377     {
02378       /* Clear the AlarmA interrupt pending bit */
02379       __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRAF);
02380 
02381 #if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
02382       hrtc->AlarmAEventCallback(hrtc);
02383 #else
02384       HAL_RTC_AlarmAEventCallback(hrtc);
02385 #endif
02386     }
02387   }
02388 
02389   /* Get the AlarmB interrupt source enable status */
02390   if (__HAL_RTC_ALARM_GET_IT_SOURCE(hrtc, RTC_IT_ALRB) != 0U)
02391   {
02392     /* Get the pending status of the AlarmB Interrupt */
02393     if (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRBF) != 0U)
02394     {
02395       /* Clear the AlarmB interrupt pending bit */
02396       __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRBF);
02397 
02398 #if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
02399       hrtc->AlarmBEventCallback(hrtc);
02400 #else
02401       HAL_RTCEx_AlarmBEventCallback(hrtc);
02402 #endif
02403     }
02404   }
02405 #endif /* #if defined(STM32L412xx) || defined(STM32L422xx) || defined (STM32L4P5xx) || defined (STM32L4Q5xx) */
02406 
02407   /* Change RTC state */
02408   hrtc->State = HAL_RTC_STATE_READY;
02409 }
02410 
02411 /**
02412   * @brief  Alarm A callback.
02413   * @param  hrtc RTC handle
02414   * @retval None
02415   */
02416 __weak void HAL_RTC_AlarmAEventCallback(RTC_HandleTypeDef *hrtc)
02417 {
02418   /* Prevent unused argument(s) compilation warning */
02419   UNUSED(hrtc);
02420 
02421   /* NOTE : This function should not be modified, when the callback is needed,
02422             the HAL_RTC_AlarmAEventCallback could be implemented in the user file
02423    */
02424 }
02425 
02426 /**
02427   * @brief  Handle AlarmA Polling request.
02428   * @param  hrtc RTC handle
02429   * @param  Timeout Timeout duration
02430   * @retval HAL status
02431   */
02432 HAL_StatusTypeDef HAL_RTC_PollForAlarmAEvent(RTC_HandleTypeDef *hrtc, uint32_t Timeout)
02433 {
02434 
02435   uint32_t tickstart = HAL_GetTick();
02436 
02437   while (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAF) == 0U)
02438   {
02439     if (Timeout != HAL_MAX_DELAY)
02440     {
02441       if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U))
02442       {
02443         hrtc->State = HAL_RTC_STATE_TIMEOUT;
02444         return HAL_TIMEOUT;
02445       }
02446     }
02447   }
02448 
02449   /* Clear the Alarm interrupt pending bit */
02450   __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRAF);
02451 
02452   /* Change RTC state */
02453   hrtc->State = HAL_RTC_STATE_READY;
02454 
02455   return HAL_OK;
02456 }
02457 
02458 /**
02459   * @}
02460   */
02461 
02462 /** @addtogroup RTC_Exported_Functions_Group4
02463  *  @brief   Peripheral Control functions
02464  *
02465 @verbatim
02466  ===============================================================================
02467                      ##### Peripheral Control functions #####
02468  ===============================================================================
02469     [..]
02470     This subsection provides functions allowing to
02471       (+) Wait for RTC Time and Date Synchronization
02472 
02473 @endverbatim
02474   * @{
02475   */
02476 
02477 /**
02478   * @brief  Wait until the RTC Time and Date registers (RTC_TR and RTC_DR) are
02479   *         synchronized with RTC APB clock.
02480   * @note   The RTC Resynchronization mode is write protected, use the
02481   *         __HAL_RTC_WRITEPROTECTION_DISABLE() before calling this function.
02482   * @note   To read the calendar through the shadow registers after Calendar
02483   *         initialization, calendar update or after wakeup from low power modes
02484   *         the software must first clear the RSF flag.
02485   *         The software must then wait until it is set again before reading
02486   *         the calendar, which means that the calendar registers have been
02487   *         correctly copied into the RTC_TR and RTC_DR shadow registers.
02488   * @param  hrtc RTC handle
02489   * @retval HAL status
02490   */
02491 HAL_StatusTypeDef HAL_RTC_WaitForSynchro(RTC_HandleTypeDef *hrtc)
02492 {
02493   uint32_t tickstart;
02494 
02495   /* Clear RSF flag */
02496 #if defined(STM32L412xx) || defined(STM32L422xx) || defined (STM32L4P5xx) || defined (STM32L4Q5xx)
02497   hrtc->Instance->ICSR &= (uint32_t)RTC_RSF_MASK;
02498 #else
02499   hrtc->Instance->ISR &= (uint32_t)RTC_RSF_MASK;
02500 #endif
02501 
02502   tickstart = HAL_GetTick();
02503 
02504   /* Wait the registers to be synchronised */
02505 #if defined(STM32L412xx) || defined(STM32L422xx) || defined (STM32L4P5xx) || defined (STM32L4Q5xx)
02506   while ((hrtc->Instance->ICSR & RTC_ICSR_RSF) == 0U)
02507 #else
02508   while ((hrtc->Instance->ISR & RTC_ISR_RSF) == 0U)
02509 #endif
02510   {
02511     if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE)
02512     {
02513       return HAL_TIMEOUT;
02514     }
02515   }
02516 
02517   return HAL_OK;
02518 }
02519 
02520 /**
02521   * @}
02522   */
02523 
02524 /** @addtogroup RTC_Exported_Functions_Group5
02525  *  @brief   Peripheral State functions
02526  *
02527 @verbatim
02528  ===============================================================================
02529                      ##### Peripheral State functions #####
02530  ===============================================================================
02531     [..]
02532     This subsection provides functions allowing to
02533       (+) Get RTC state
02534 
02535 @endverbatim
02536   * @{
02537   */
02538 /**
02539   * @brief  Return the RTC handle state.
02540   * @param  hrtc RTC handle
02541   * @retval HAL state
02542   */
02543 HAL_RTCStateTypeDef HAL_RTC_GetState(RTC_HandleTypeDef *hrtc)
02544 {
02545   /* Return RTC handle state */
02546   return hrtc->State;
02547 }
02548 
02549 /**
02550   * @}
02551   */
02552 
02553 /**
02554   * @}
02555   */
02556 
02557 /** @addtogroup RTC_Private_Functions
02558   * @{
02559   */
02560 /**
02561   * @brief  Enter the RTC Initialization mode.
02562   * @note   The RTC Initialization mode is write protected, use the
02563   *         __HAL_RTC_WRITEPROTECTION_DISABLE() before calling this function.
02564   * @param  hrtc RTC handle
02565   * @retval HAL status
02566   */
02567 HAL_StatusTypeDef RTC_EnterInitMode(RTC_HandleTypeDef *hrtc)
02568 {
02569   uint32_t tickstart;
02570   HAL_StatusTypeDef status = HAL_OK;
02571 
02572   /* Check if the Initialization mode is set */
02573 #if defined(STM32L412xx) || defined(STM32L422xx) || defined (STM32L4P5xx) || defined (STM32L4Q5xx)
02574   if ((hrtc->Instance->ICSR & RTC_ICSR_INITF) == 0U)
02575   {
02576     /* Set the Initialization mode */
02577     SET_BIT(hrtc->Instance->ICSR, RTC_ICSR_INIT);
02578 
02579     tickstart = HAL_GetTick();
02580     /* Wait till RTC is in INIT state and if Time out is reached exit */
02581     while ((READ_BIT(hrtc->Instance->ICSR, RTC_ICSR_INITF) == 0U) && (status != HAL_TIMEOUT))
02582     {
02583       if ((HAL_GetTick()  - tickstart) > RTC_TIMEOUT_VALUE)
02584       {
02585         status = HAL_TIMEOUT;
02586         hrtc->State = HAL_RTC_STATE_TIMEOUT;
02587       }
02588     }
02589   }
02590 #else /* #if defined(STM32L412xx) || defined(STM32L422xx) || defined (STM32L4P5xx) || defined (STM32L4Q5xx) */
02591   if ((hrtc->Instance->ISR & RTC_ISR_INITF) == 0U)
02592   {
02593     /* Set the Initialization mode */
02594     hrtc->Instance->ISR = (uint32_t)RTC_INIT_MASK;
02595 
02596     tickstart = HAL_GetTick();
02597     /* Wait till RTC is in INIT state and if Time out is reached exit */
02598     while ((READ_BIT(hrtc->Instance->ISR, RTC_ISR_INITF) == 0U) && (status != HAL_TIMEOUT))
02599     {
02600       if ((HAL_GetTick()  - tickstart) > RTC_TIMEOUT_VALUE)
02601       {
02602         status = HAL_TIMEOUT;
02603         hrtc->State = HAL_RTC_STATE_TIMEOUT;
02604       }
02605     }
02606   }
02607 #endif /* #if defined(STM32L412xx) || defined(STM32L422xx) || defined (STM32L4P5xx) || defined (STM32L4Q5xx) */
02608 
02609   return status;
02610 }
02611 
02612 /**
02613   * @brief  Exit the RTC Initialization mode.
02614   * @param  hrtc RTC handle
02615   * @retval HAL status
02616   */
02617 HAL_StatusTypeDef RTC_ExitInitMode(RTC_HandleTypeDef *hrtc)
02618 {
02619   HAL_StatusTypeDef status = HAL_OK;
02620 
02621   /* Exit Initialization mode */
02622 #if defined(STM32L412xx) || defined(STM32L422xx) || defined(STM32L4P5xx) || defined(STM32L4Q5xx)
02623   CLEAR_BIT(RTC->ICSR, RTC_ICSR_INIT);
02624 #else
02625   /* Exit Initialization mode */
02626   CLEAR_BIT(RTC->ISR, RTC_ISR_INIT);
02627 #endif
02628 
02629   /* If CR_BYPSHAD bit = 0, wait for synchro */
02630   if (READ_BIT(RTC->CR, RTC_CR_BYPSHAD) == 0U)
02631   {
02632     if (HAL_RTC_WaitForSynchro(hrtc) != HAL_OK)
02633     {
02634       hrtc->State = HAL_RTC_STATE_TIMEOUT;
02635       status = HAL_TIMEOUT;
02636     }
02637   }
02638   else /* WA 2.9.6 Calendar initialization may fail in case of consecutive INIT mode entry */
02639   {
02640     /* Clear BYPSHAD bit */
02641     CLEAR_BIT(RTC->CR, RTC_CR_BYPSHAD);
02642     if (HAL_RTC_WaitForSynchro(hrtc) != HAL_OK)
02643     {
02644       hrtc->State = HAL_RTC_STATE_TIMEOUT;
02645       status = HAL_TIMEOUT;
02646     }
02647     /* Restore BYPSHAD bit */
02648     SET_BIT(RTC->CR, RTC_CR_BYPSHAD);
02649   }
02650 
02651   return status;
02652 }
02653 
02654 
02655 
02656 /**
02657   * @brief  Convert a 2 digit decimal to BCD format.
02658   * @param  Value Byte to be converted
02659   * @retval Converted byte
02660   */
02661 uint8_t RTC_ByteToBcd2(uint8_t Value)
02662 {
02663   uint32_t bcdhigh = 0U;
02664   uint8_t temp = Value;
02665 
02666   while (temp >= 10U)
02667   {
02668     bcdhigh++;
02669     temp -= 10U;
02670   }
02671 
02672   return ((uint8_t)(bcdhigh << 4U) | temp);
02673 }
02674 
02675 /**
02676   * @brief  Convert from 2 digit BCD to Binary.
02677   * @param  Value BCD value to be converted
02678   * @retval Converted word
02679   */
02680 uint8_t RTC_Bcd2ToByte(uint8_t Value)
02681 {
02682   uint8_t tmp;
02683   tmp = ((Value & 0xF0U) >> 4U) * 10U;
02684   return (tmp + (Value & 0x0FU));
02685 }
02686 
02687 /**
02688   * @}
02689   */
02690 
02691 #endif /* HAL_RTC_MODULE_ENABLED */
02692 /**
02693   * @}
02694   */
02695 
02696 /**
02697   * @}
02698   */